Golder Associates Ltd.

1796 Courtwood Crescent Ottawa, Ontario, Canada K2C 2B5. Telephone 613-224-5864 Fax 613-224-9928

REPORT ON

2004 GROUNDWATER MONITORING PROGRAM COMMUNAL SEWAGE SYSTEM NATION MUNICIPALITY ST. BERNARDIN, ONTARIO

Submitted to:

Eastern Ontario Health Unit Central Office 100 Pitt Street Cornwall, Ontario K6J 5T1

DISTRIBUTION:

1 copyLastern Ontario Health Unit, Cornwall1 copyMinistry of the Environment, Kingston

copy - Ontario Clean Water Agency
 copies - The Nation Municipality
 copies - Golder Associates Ltd.

February 2005

04-1120-708

		•
		•
		1
		•
		=
		- E
		-
		•
		. 1
		1

TABLE OF CONTENTS

Table of Contents

1
1
1
2
3
3
3
4
5
5
6
Υ7
7
9
10
11
In Order
Following Page 11
i ago i i
ity
_

FIGURE 2 - Site Plan with Groundwater Elevations and Flow Directions

FIGURE 3 - Groundwater Elevations and Rainfall Data

TABLE OF CONTENTS (continued)

LIST OF APPENDICES

APPENDIX A - Easement Agreement

APPENDIX B - Certificate of Approval (Sewage) No. CAL-94-07, dated June 23, 1994

and Use Permit dated January 1997

APPENDIX C - Record of Borehole Sheets

APPENDIX D - Analysis of Pumping/Recovery Data Sheets

APPENDIX E - Groundwater Chemical Analyses Data

APPENDIX F - Report of Analyses Sheets- PSC Analytical Services

APPENDIX G - Ministry of the Environment Compliance Inspection Report, Hamlet of

St. Bernardin Communal Sewage

1.0 INTRODUCTION

This report presents the results of the 2004 groundwater monitoring program undertaken by Golder Associates Ltd. (Golder Associates) at the St. Bernardin Communal Sewage System. The sewage system is located on part of Lot 12, Concession VI, in the geographic Township of Caledonia, near the Hamlet of St. Bernardin, in the Nation Municipality, Ontario (Figure 1). It is understood that the sewage system became operational in 1997. Groundwater monitoring and annual reporting were required as a condition of approval for the sewage system. Groundwater sampling was completed in the spring and fall of 2004.

1.1 Certificate of Approval

The St. Bernardin Sewage System is operating under a Certificate of Approval ("C of A") issued for the tank and tile bed system (Class 4 system) by the Eastern Ontario Health Unit on March 25, 1996. Conditions of approval required the preparation of a maintenance program (as outlined by Lascelles Engineering Ltd.) and fulfillment of conditions of approval set out by the Ministry of the Environment in a letter dated February 20, 1996. In terms of groundwater monitoring, the conditions set by the MOE are as follows:

- The two year time frame for sampling be removed while maintaining the option of changing the requirements of the program following review of the data acquired during the first two years of operation. This ensures that monitoring continues and any changes to the monitoring program would have to be specifically approved; and,
- The analytical parameter list be expanded to include nitrite and ammonia;

A Use Permit was issued for the original septic tank and tile bed installation by the Eastern Ontario Health Unit in January 1997. See Appendix B for copies of the C of A including the MOE conditions for approval and the Use Permit.

1.2 Site Description

The St. Bernardin Sewage System site consists of land owned by The Nation Municipality ("Nation") and land leased by Nation which is used as a groundwater contaminant attenuation zone ("CAZ"). Caledonia Creek runs from south to north, east of the St. Bernardin Sewage System site (Figure 2). A ditch\creek runs along the south eastern border of the CAZ. The pumping station, septic tank, and pump chamber are located off of County Road 22 near the western edge of the property owned by Nation. The leaching beds are located approximately 120 metres east of County Road 22 on the land owned by Nation. The area around the St. Bernardin Sewage system consists of agricultural fields (corn) west and south of the leaching bed, residential housing and businesses north of the leaching bed, and agricultural fields (hay) east of the leaching bed on the CAZ.

2.0 GROUNDWATER SAMPLING

Groundwater samples were collected from all groundwater monitors on May 19, 2004 and October 21, 2004. Groundwater was sampled using the dedicated samplers that were installed during monitor installation (in 2003). A minimum of three standing volumes of groundwater was purged from each monitor prior to the collection of groundwater samples. Groundwater levels were measured prior to purging. Piezometer tests were conducted in each groundwater monitor during sampling on May 19, 2004.

Temperature, pH, dissolved oxygen and conductivity of the groundwater samples were measured in the field at the time of sampling. The field conductivity, pH, temperature, and dissolved oxygen measurements were obtained using meters calibrated in the field prior to use. All sample IDs were entered on a Chain of Custody Form and the samples were placed in coolers with ice packs until they were delivered in person to PSC Analytical Services in Mississauga, Ontario for analysis of chloride, dissolved organic carbon (DOC), ammonia, nitrate, nitrite, total phosphorus, and sodium. Groundwater samples were collected, prepared, and preserved in the field using the following protocols:

Analytical Parameters	Preparation and Preservation Protocols
General chemistry	Plastic bottle, unfiltered, unpreserved
DOC	Amber glass bottle preserved to pH<4 with H ₂ SO ₄
total phosphorous, ammonia	Plastic bottle, unfiltered, preserved to pH<2 with H ₂ SO ₄

3.0 SUBSURFACE CONDITIONS

3.1 Geology

The geological conditions encountered during borehole drilling and groundwater monitor installation program carried out by Golder Associates in 2003 are shown on the Record of Boreholes in Appendix C. Details of the groundwater monitor installations for each of the boreholes are also included in the Record of Boreholes in Appendix C. It should be noted that the boundaries between strata on the Record of Borehole Sheets have been inferred from observations during drilling and non-continuous sampling and, as such their positions should be considered as transitional in nature rather than as an exact plane of geological change. Natural variations other than those encountered in the boreholes should also be expected to exist.

In general, the geological conditions at the site consist of a surficial topsoil layer underlain by a brown/grey fine sand to sandy silt (sand) unit with depths ranging from 0.15 to 0.40 m. The sand unit ranged in thickness from 0.67 to 1.07 m. The sand unit is underlain by a silty (clay) unit. None of the boreholes at the site encountered bedrock to a maximum depth of investigation of 4.6 metres below ground surface.

Previous studies and MOE water well records suggest that the clay unit is typically 30 to 40 m thick and is underlain by roughly 3 m of gravel overlying shale (Geo-analysis, 1992).

3.2 Hydraulic Conductivity

Piezometer test hydraulic conductivities for the sand unit were calculated using the method of Hvorslev (1951), according to the following expression:

$$K = \frac{r^2 In(L/R)}{2LT_o}$$

where:

r = monitor riser radius

L =screen length

R = radius of borehole

 T_o = basic time lag

The hydraulic conductivities that were calculated from the rising head tests completed in September 2003, November 2003 and May 2004 are summarized in Table 1. Note that unit conversion errors were found in the data presented in the 2003 annual report (Golder, 2004); the 2003 hydraulic conductivity values have been revised and are shown in Table 1.

The 2004 rising head data indicates that hydraulic conductivities for the sand unit below the St. Bernardin Sewage System average 1.6×10^{-4} centimetres per second (cm/s) in the area immediately around the leaching beds. These K values are in the range of historical values determined by Guelph permeameter $(1.3 \times 10^{-5} \text{ to } 2.9 \times 10^{-4} \text{ cm/s Geo-Analysis, } 1992)$. The Guelph permeameter tests were completed in the area north east of the St. Bernardin Sewage System, close to groundwater monitor BH03-6.

The 2004 rising head data from BH03-6 indicates that the hydraulic conductivity for the clay unit below the St. Bernardin Sewage system is on the order of 1.9×10⁻⁶ cm/s. This estimated K value is relatively high for a clay, possibly reflecting the effects of interbedded sand and silty seams.

3.3 Groundwater Flow

Groundwater level measurements in 2004 are presented in Table 2. Elevations were referenced to a geodetic datum located at the flagpole in front of the old school on County Road 22, north of the site.

Shallow groundwater (water table) elevations and interpreted groundwater elevation contours from May and October 2004 are presented on Figure 2. The range in groundwater elevations measured during 2003-2004 compared with rainfall data for the same period indicates that the shallow groundwater flow system is influenced by infiltration (Figure 3).

The groundwater elevations in May and October 2004 suggest that there is a groundwater mound in the sand unit below the St. Bernardin leaching beds, however, the groundwater elevations also suggest that the natural groundwater flow direction is towards the east. This is consistent with the estimated groundwater flow direction determined previously (Geo-analysis, 1992). Due to the contrast between the hydraulic conductivity of the sand and the clay units, horizontal groundwater flow would be expected to occur primarily in the higher hydraulic conductivity sand unit. Groundwater flow within the clay would occur primarily in fractures and the sand/silt seams in the clay; and the amount of flow would be dependent on the connectivity of the sand and silt layers.

Using groundwater elevations at BH03-2, BH03-3 and BH03-4, the horizontal hydraulic gradient in the vicinity of the groundwater mound below the leaching beds was calculated. The horizontal hydraulic gradient was also calculated using groundwater elevations at BH03-3, BH03-4 and BH03-6, in order to estimate the gradient away from the influence of the groundwater mound. The horizontal gradient in the vicinity of the groundwater mound was approximately 0.016 in May 2004 and 0.009 in October 2004, while east of the groundwater mound (on the CAZ), the horizontal hydraulic gradient was approximately 0.011 in May 2004 and 0.017 in October 2004.

An estimate of average linear groundwater flow velocity can be calculated using the following equation:

$$v = \frac{-K}{n}i$$

Where v is the average linear groundwater velocity, K is the hydraulic conductivity, i is the horizontal hydraulic gradient and n is porosity. Using the 2004 average piezometer test hydraulic conductivity for the sand unit $(1.6\times10^{-4} \text{ cm/s})$, and assuming a porosity for the sand of 35% (Freeze and Cherry, 1979), the calculated groundwater flow velocity is estimated to range from 1.4 to 2.3 metres per year in the area close to the leaching beds in the sand unit. Using the 2004 piezometer test, hydraulic conductivity for the clay unit $(1.9\times10^{-6} \text{ cm/s})$ and assuming an effective porosity of the clay of 1 percent (representative of fractures and sand/silt seams), the calculated flow velocity is estimated to be approximately 0.6 to 1.0 metres per year in the clay unit (east of the leaching beds in the CAZ).

3.4 Groundwater Quality

Results of field and laboratory chemical and physical analyses conducted on groundwater samples, along with relevant Ontario Drinking Water Standards, Objectives, and Guidelines (MOE, 2003), are presented in Appendix E. Copies of the report of analysis sheets from Accutest Laboratories Ltd. are provided in Appendix F.

3.4.1 Background Groundwater Quality

A review of historical documents regarding this site and other sites within the Nation Municipality suggests that the overburden groundwater in the area has naturally elevated concentrations of chloride (200 to 1400 mg/L; Golder, 2003). Nitrate concentrations ranging from 0.6 mg/L to 9.0 mg/L have also been documented (Geoanalysis, 1992) in the area around the St. Bernardin Sewage System site. The elevated nitrate concentrations were attributed to agricultural activities. There are no historical data for any other parameters.

Groundwater monitor BH03-1 is located approximately 30 metres west of leaching beds and is likely upgradient from the leaching beds. BH03-5 is located approximately 40 metres north of the leaching beds and is likely cross-gradient of the leaching beds (see Figure 2). Therefore, the groundwater quality at BH03-1 and BH03-5 may be used to represent on-site background groundwater quality. The groundwater quality at BH03-1 and BH03-5 in May and October 2004 is summarized in Table 3.

Groundwater concentrations of chloride, DOC, and sodium exceeded the applicable ODWQS criteria at the background monitors in 2004, as was the case in 2003. The maximum concentration of nitrate was 0.8 mg/L and the maximum concentration of chloride was 1350 mg/L. In general, the concentrations of groundwater quality parameters in the background monitors were similar in 2003 and 2004.

3.4.2 Downgradient Groundwater Quality

Groundwater monitors BH03-2, BH03-3, BH03-4 and BH03-6 are interpreted to be downgradient of the leaching beds, therefore the groundwater quality at these monitors is interpreted to be representative of downgradient groundwater quality.

In 2004, groundwater concentrations of nitrate at the downgradient groundwater monitors ranged from less than 0.2 mg/L (BH03-6) to 16.70 mg/L (nearest downgradient monitor; BH03-3). The nitrate concentrations at BH03-2 and BH03-3 were much greater than background in the fall of 2004, but were similar to background in the spring of 2004. The nitrate concentrations at BH03-4 and BH03-6 were similar to background in both the spring and fall of 2004.

Groundwater concentrations of chloride at the downgradient groundwater monitors ranged from 2.9 to 1360 mg/L. The highest chloride concentration was found at BH03-3, immediately downgradient of the leaching beds, also the location of the highest nitrate concentration. The chloride concentrations at BH03-3 are similar to the highest background groundwater concentration. The lowest chloride concentrations were found at BH03-6, and were much lower than concentrations at the background wells.

The downgradient groundwater quality in 2004 is summarized as follows:

- Groundwater nitrate concentrations exceeded the ODWQS and background concentrations at BH03-2 and BH03-3 in the fall of 2004;
- Groundwater concentrations of sodium exceeded ODWQS at all locations with the exception of BH03-6 and exceeded the background concentrations at BH03-3 and BH03-2 (spring only);
- Groundwater concentrations of DOC exceeded ODWQS at all locations with the exception of BH03-5 and exceeded historical background concentrations at BH03-2; and
- Groundwater concentrations of chloride exceeded ODWQS at all locations with the exception of BH03-6 and did not exceed historical background concentrations at any locations.

4.0 INTERPRETATION OF GROUNDWATER QUALITY

For comparison of groundwater quality results and drinking water standards, ODWQS (MOE, 2003) non-health related objectives (i.e., aesthetic parameters) and health related parameters for which a Maximum Acceptable Concentration (MAC) or Interim Maximum Acceptable Concentration (IMAC) has been established are used.

Nitrate is commonly used as a sewage indicator parameter and since the background nitrate groundwater concentration is low (maximum historical concentration of 0.8 mg/L at BH03-1) at the St. Bernardin Sewage System site, nitrate is used as the prime indicator of sewage impact. Other parameters (e.g. chloride, DOC and phosphorus) are at elevated concentrations in background groundwater, and are therefore not as useful as nitrate as an indicator of sewage impact.

Based on 2004 reported nitrate concentrations, groundwater at BH03-2 and BH03-3 is interpreted to be impacted by effluent from the St. Bernardin Sewage System. Groundwater at the downgradient monitoring locations BH03-4 and BH03-6 (the Reasonable Use assessment location) is interpreted not to be impacted by the sewage system effluent (see Table 4).

The calculated groundwater velocity based on 2004 hydrogeological data indicates that the groundwater velocity in close proximity to the St. Bernardin Sewage System is approximately 1.4 to 2.3 metres per year. Considering that BH03-4 is approximately 40 metres downgradient of the leaching beds, no groundwater impacts at BH03-4 should be expected until 2014. Groundwater quality data for BH03-4 suggests that groundwater at this location is likely not impacted by effluent. It is also possible that the relatively thin sand unit over the clay unit results in significant changes in the saturated thickness of the sand, due to infiltration and evaporation, thus slowing the movement of effluent impacted groundwater away from the sewage system.

Since it is expected that active groundwater flow is limited mainly to the sand unit and in the upper portion of the clay unit, and since groundwater impacts are interpreted not to be occurring 40 metres downgradient of the leaching beds (the approximate distance to BH03-4), it is concluded that the St. Bernardin Sewage System is not impacting local water supply wells or watercourses beyond the CAZ.

4.1 Groundwater Compliance

MOE Guideline B-7 (MOE, 1994), "Incorporation of the Reasonable Use Concept into MOE Groundwater Management", addresses the levels of off-site impact on groundwater considered acceptable by the MOE and defines the level of impact on groundwater beyond which some form of mitigation measure(s) would be warranted.

Under MOE Guideline B-7, a change in the quality of groundwater on adjacent properties will only be acceptable if the quality is not degraded in excess of fifty percent of the difference between background concentration and established water quality criteria for aesthetic related parameters, and twenty-five percent of the difference between background conditions and established water quality criteria for health related parameters, If the background concentrations of a particular parameter exceeds a given criteria, the quality of the groundwater should not be degraded further. The acceptable groundwater concentrations for the site based on the Reasonable Use Concept set forwards within MOE Guideline B-7 are known as the Reasonable Use Performance Objectives (RUPO).

At the St. Bernardin Sewage System Site, BH03-6 is used for Reasonable Use Assessment. Results for 2004 indicate that the St. Bernardin Sewage System Site has not caused ground impact at downgradient monitors BH03-4 (40 metres downgradient) or BH03-6 (the Reasonable Use Assessment monitor, 145 metres downgradient of the sewage system). Therefore, the St. Bernardin Sewage System site is in compliance with the Reasonable Use Policy.

5.0 PROPOSED 2005 MONITORING PROGRAM

The proposed 2005 monitoring program for the St. Bernardin Sewage System is based on the results of the 2004 monitoring program and the sewage system C of A. The purpose of the monitoring program will be to document groundwater impact by the St. Bernardin Sewage System. The monitoring program involves the collection of groundwater samples and measurement of groundwater levels at background and downgradient monitoring locations in the spring (April-May) and fall (September-October). The following summarizes the sampling locations, frequency, and parameters to be sampled for:

Location Type	Frequenc y	Monitoring Locations	Parameters
Background	Spring and Fall	ВН03-1 ВН03-5	Ammonia, conductivity, DOC,
Downgradient		BH03-2	DO, nitrate, nitrite, pH,
		BH03-3	phosphorus, sodium
		BH03-4	·
Reasonable Use Assessment		BH03-6	

The results of the future groundwater monitoring programs will be documented in a yearly report. Future reports may include recommended changes to the monitoring program and updated interpretations of groundwater impact by the St. Bernardin Sewage System.

6.0 LIMITATIONS AND USE OF REPORT

This report was prepared for the exclusive use of Eastern Ontario Health Unit and The Nation Municipality. The report, which especially includes all tables, figures, and appendices, is based on data and information collected by Golder Associates and is based solely on the conditions of the site at the time of the work, supplemented by historical information and data obtained by Golder Associates as described in this report, and in the previous reports prepared by Golder Associates (see References for list of previous reports). Each of these reports must be read and understood collectively, and can only relied upon in their totality.

The assessment of environmental conditions and possible hazards at this site has been made using the results of physical measurements and chemical analyses of liquids from a number of locations. The site conditions between sampling locations have been inferred based on conditions observed at borehole and monitoring well locations. Subsurface conditions may vary from these sampled locations.

The services performed, as described in this report, were conducted in a manner consistent with that level of care and skill normally exercised by other members of the engineering and science professions currently practicing under similar conditions, subject to limits and financial and physical constraints applicable to the services.

Any use which a third party makes of this report, or any reliance on, or decisions to be made based on it, are the responsibilities of such third parties. Golder Associates accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report.

The findings and conclusions of this report are valid only as of the date of this report. If new information is discovered in future work, including excavations, borings, or other studies, Golder should be requested to re-evaluate the conclusions of this report, and to provide amendments as required.

GQLDER ASSOCIATES LTD.

Caitlin Martin, M.Sc. Environmental Scientist

D. 1.42

Brian T. Byerley, M.Sc., P.Eng Hydrogeologist/Associate

CAM:BTB:

n:\active\2004\1120\environmental\04-1120-708 st bernardin\2004 report\rpt-001 05jan01 stbernardin 2004 annual.doc

LIST OF REFERENCES

- Golder Associates, 2004. 2003 Hydrogeological investigation and groundwater monitoring program, communal sewage system, Nation Municipality, St. Bernardin, Ontario, Report No. 03-1120-717, April 2004.
- Golder Associates, 2003. 2002 Groundwater Monitoring Program, Communal Sewage System, Nation Municipality, Fournier, Ontario, Report No. 021-2735-1, March 2003.
- Geoanalysis, 1992. Proposed Communal Sewage Disposal System for the Hamlet of St. Bernardin, February 21, 1992.
- Ministry of the Environment, 2003. Ontario Drinking Water Quality Standards, June 2003: Ontario Ministry of the Environment.
- Freeze, R.A. and J.A. Cherry, 1979. Groundwater. Prentice-Hall Inc., Englewood Cliff, New Jersey, 604p.

TABLE 1
SUMMARY OF RISING HEAD DATA RESULTS (cm/s)

Monitor Location	September 2003	November 2003	May 2004
03-1 (sand)	n/a	4.9×10 ⁻⁵	5.8×10 ⁻⁵
03-2 (sand)	8.1×10 ⁻⁶	n/a	3.0×10 ⁻⁴
03-3 (sand)	9.1×10 ⁻⁵	1.8×10 ⁻⁴	2.3×10 ⁻⁴
03-4 (sand)	n/a	1.3×10 ⁻⁴	1.1×10 ⁻⁴
03-5 (sand)	n/a	n/a	1.2×10 ⁻⁴
03-6 (clay)	n/a	1.5×10 ⁻⁶	1.9×10 ⁻⁶

Notes

n/a - data not available

September 2003 and November 2003 results have been revised from the previous report.

TABLE 2

2004 GROUNDWATER ELEVATIONS

Ele	Ground Surface	Top of Casing elevation	Groundwater Elevation (masl)		
	Elevation (masi)	(masl)	May 19 2004	Oct 21 2004	
03-1	64.746	65.456	64.5	64.1	
03-2	65.086	65.906	64.8	64.4	
03-3	65.286	66.066	64.7	64.3	
03-4	64.746	65.571	64,5	64.2	
03-5	64.806	65.636	64.6	64.1	
03-6	64.541	65.331	63.2	62.0	

Notes

n/a - data not available

TABLE 3
BACKGROUND GROUNDWATER QUALITY

- <u>-</u>		BH03-5	BH03-1	BH03-5	BH03-1	BH03-5	BH03-1
Parameter	ODWQS	27-0			ay-04	21-Oct-04	
Ammonia		0.06	0.05	<0.03	0.03	<0.03	0.05
Chloride	250 (AO)	916	1390	826	1330	906	1350
Conductivity (us/cm)		3200	4300	3230	4600	3700	4900
DOC	5 (AO)	1.6	20.2	3.5	15.3	5.4	34.7
Nitrate	10	0.29	0.1	0.4	8.0	<0.2	0.4
Nitrite	1	<0.10	<0.10	<1.0	<1.0	<2.0	<2.0
pН		6.5	6.1	7.1	6.8	7.3	6.8
Phosphorous (total)		5.44	4.85	2.61	5.46	3.62	8.36
Sodium	200	387	874	321	767	387	850

Notes:

Results in mg/L except for pH and conductivity

ODWQS = Ontario Drinking Water Quality Standards, Objectives and Guidelines, June 2003

(AO) - Aesthetic objective

TABLE 4

INTERPRETATION OF GROUNDWATER QUALITY DATA FROM DOWNGRADIENT GROUNDWATER MONITORS

Sampling Location	Parameters Exceeding ODWQS in 2004	Parameters Elevated Compared to Background Concentrations	Hydrogeological Interpretation
03-2	chloride, DOC, nitrate, sodium	nitrate, sodium (slightly)	 borehole 03-2 is located approximately 5 metres downgradient from leaching beds (see Figure 2); groundwater interpreted to be impacted by sewage system based on groundwater quality;
03-3	chloride, DOC, nitrate, sodium	chloride (slightly), nitrate, sodium	 borehole 03-3 is located approximately 5 metres downgradient from leaching beds (see Figure 2) groundwater interpreted to be impacted by sewage system based on groundwater quality;
03-4	chloride, DOC, sodium	nitrate	 borehole 03-4 is located approximately 40 metres downgradient from leaching beds (see Figure 2); groundwater interpreted to be possibly impacted by sewage system based on groundwater;
03-6	DOC	n/a	 borehole 03-6 is located approximately 150 metres downgradient from leaching beds (see Figure 2); groundwater is interpreted to not be impacted by septic system effluent based groundwater flow velocity;

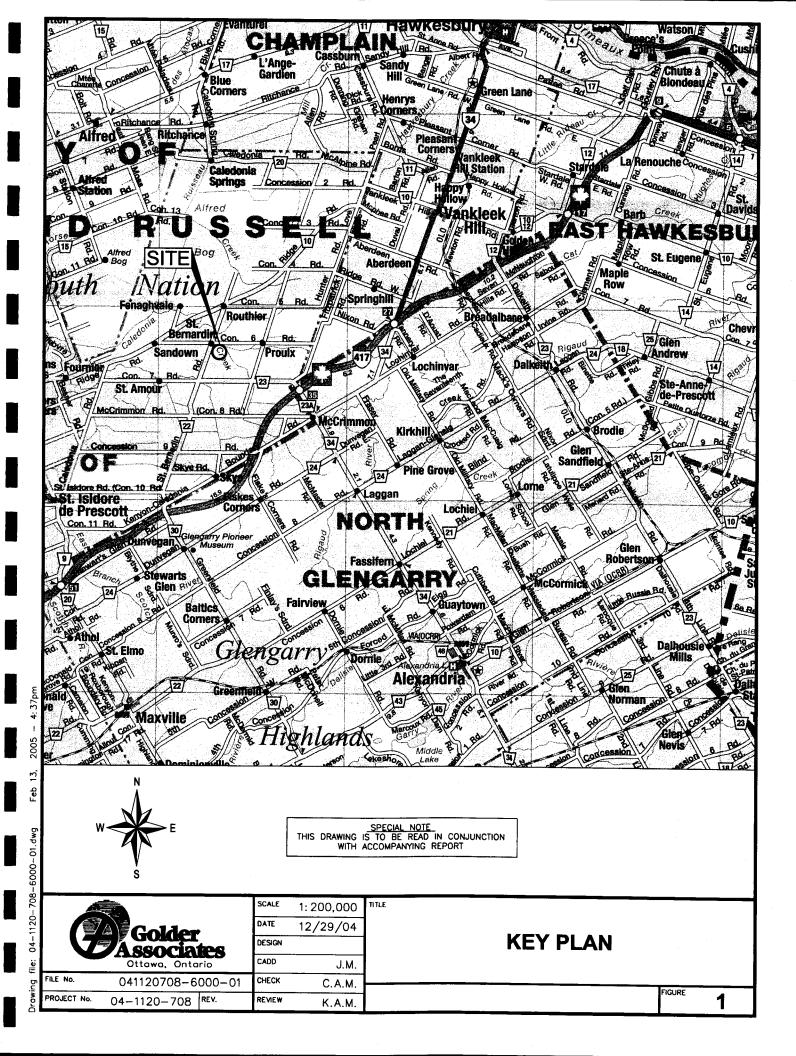
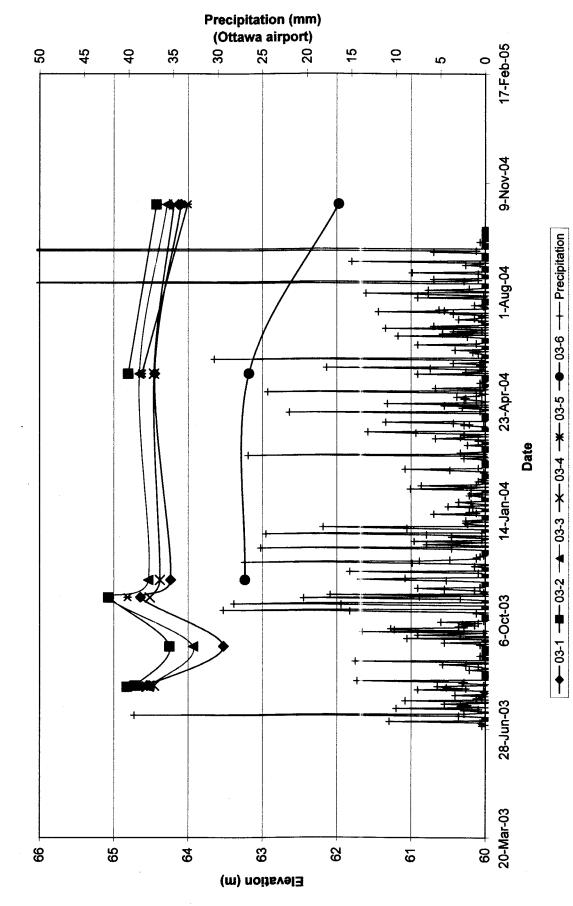
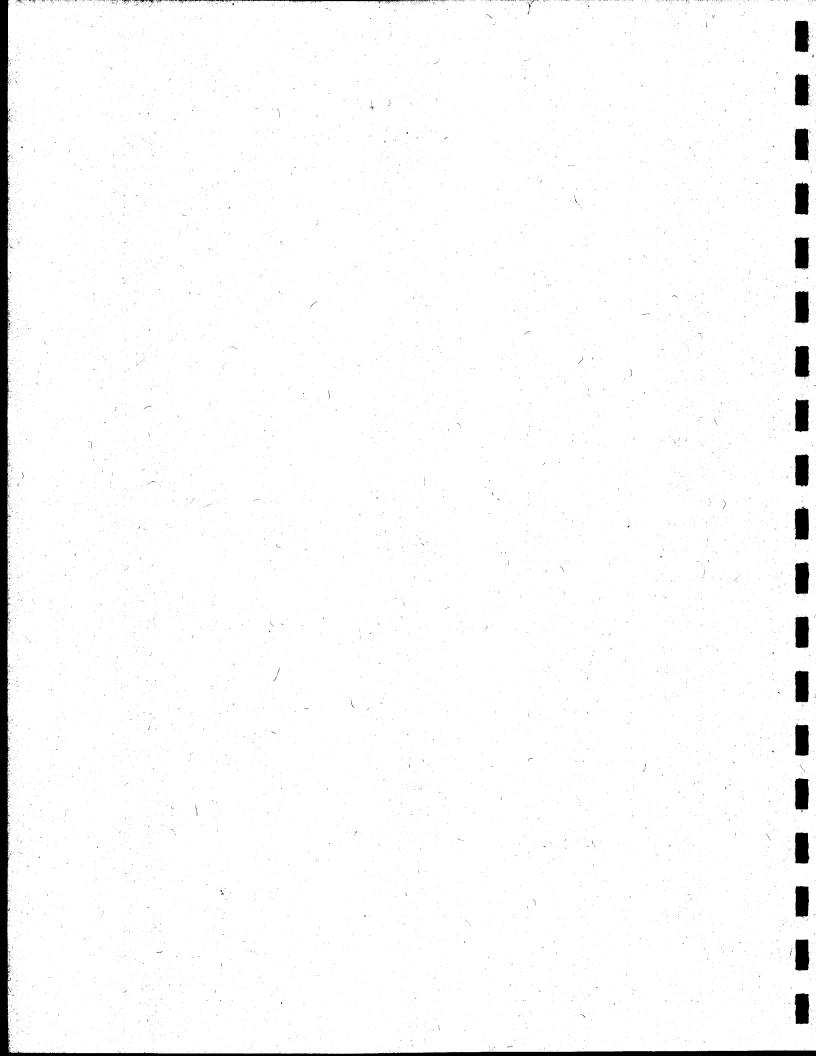
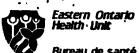



Figure 3 Groundwater Elevation and Precipitation Trends




Golder Associates

		-
		-
		-
	•	
		_
		•
		-
		-
	•	
		·
		-
		_
		-
		·
		-

APPENDIX B

CERTIFICATE OF APPROVAL (SEWAGE) NO. CAL-94-07 DATED JUNE 23, 1994 AND USE PERMIT DATED JANUARY 1997

Bureau de santé de l'Est de l'Ontario

APPLICATION FORM AND CERTIFICATE OF APPROVAL FOR A CLASS 2-6 SEWAGE SYSTEM

(Please read and print clearly items 1 to 16 only)

Complete in ink.

Application No.: CAL - 94-07
Fee Receipt No.: 51368
Date Received: 24 6 94

		Complete in					
1. Name of Owner TOWNSHIP OF CALEDONIA	Tel. No.		installer's Name			Tel. No.	
Owner's postal address for future correspondence 6950 COUNTY RD		R.R. I .	STBERN		MOE Licence	Number	
6950 COUNTY RD Directions to Lot: Highway No., Secondary roads,	Signs to Follow, etc.	 		~^ .			•
310 m south on	Coun-	W ED V	022	FROM	_		1005
\$6 ROAD ALLOW	ance .	LOT	is on	east s	IDE	ORC	בינה! צוהטס
(CONSTRUCT/INSTALLIALTER/EXTEND/ENLARGE)	4	sewa	····································	eq. SINGLE FAMILY	FAMIL DWELLING OR	Y DW	ELLING.
4. County Township CALEDON	Town, Village	RNARDIN	Lot No.	Cone. No.	Sub Lot A	ta . 1	Man No.
Lot Size 5. State No.	of	Fixture Count (See Appendix A)	6. Weter Supply:		7.	Dwelling or	building
6.0 Acres Bedrooms -	48		Ī	Bored Well 💢	ŀ		_
Persone	52		Drilled Well	•		New Existing	×
8. Any problems with existing sewage system?	X ** 0 1	No.	Other	or Existing	<u>.</u>	Custash	^
9. Relationship to Serverance if applicable	10. The application	tees are the follow	ving (non-refundable)	<u> </u>		
Lot Approval Pending	a. Small system	ns servicing single	family residences u	p to five (5) bedro			
Lot Approved	_	-	00 litres, (989 impe lated daily flow in e	-			
Under Severance Application No.		RED DOLLARS (#					Ì
11. No application will be processed	if a copy of th	Transfer/Dec	ed of land of ti	he property in	question	is not e	nclosed.
12. NOTICE: Unprocessed applications mission.	will be cancelled	l without furth	er notice or refu	and 12 months	after the	applicatio	n sub-
13. The Eastern Ontario Health Unit atr recommended for any septic/holding place. The Health Unit and its agen	z tank excavation	until placeme	nt of backfill m	aterial. Tank ac	ccess lids s	should all	ways be in
14. I certify that the above information is true, complete and accurate. The installation of the sewage system shall conform with provincial requirements and local Municipal By-Laws. I have received the leaflet "Environment Information-Environment". I also certify that I have read, completed, signed and attached with this application pages 2 and 3 and appendices A, B, C, D (where necessary) and one of the following typical drawings A, B, C, D, E							
 Under Section 139 of the Environm Director and the Environmental App of receipt of the decision. 	ental Protection eal Board, 112 S	Act, R.S.O. 199 t. clair Avenue	0, an applicant West, Suite 50	may appeal a 2, Toronto, On	decision b tario M4V	y writing 1N3 with	to the nin 15 days
16. The sewage system must be compl use permit has not been issued afte red to re-apply and pay the applicat	er this time the s						
Manon	Paris			6. 22	<i>.</i>	a.L	
Signature of Ov	wary	ue		pe 25	fllm Data	/I	_
for Laseel	le Engine	evingolo	<u> </u>	<i>U</i>		<u></u>	
A Certificate of Approval for this application is re inspected by	fused for the sesson Refused	a given (aftached)		Date			
		1	Directo	,			
CERTIFICATE OF APPROVAL							
Based on the information provided on pages 1, 2, 3, 4 and appendices and the typical drawing of this application and pursuant to Section 77 of the Environmental Protection Act, R.S.O. 1990, this Certificate of Approval is hereby issued for the installation of a sewage disposal system with the requirements and conditions here approved. Requirements and conditions of the sewage system installation are appended.							
Reviewed by Antoine Rabbat Stephen Babb	Issued by	ain The	Director	Marc	l 25	- /1	96

Central Office/Bureau chef 1000, rue Pitt Street CORNWALL, Ont. (6J 5T) (613) 933-175 offiu 1-800-267-7120 Fax/hld/copleur; (613) 933-7930 (613) 933-9916

647, rue St. Lewrence Street P.O. Box/C.P. 618 WINCHESTER, Ont. KOC 2KO (613) 774-2738 Fex/h8l4copleur; (613) 774-289

P.C. Box/C.P. 329 Highway 34, South Joute 34 sud ALEXANDRIA, Ont. KOC 1A0 (613) 525-5112 Fax/télécopieur. (613) 525-3634

1946, nue Labonté Street P.O. Bes/C.P. 89 CLARENCE CREEK, Ont. KOA 1NO (613) 488-3337 Fax/1686copieur: 1613; 488-3306

134, est rue Main Street East Bureau/Suite 301 HAWKESBURY, Ont. KSA 1A3 (813) 832-4355 Fax/télécopleur: (813) 832-1807 41, rue Racine Street PD. Box/C.P. 338 CASSELMAN. Ont. KOA 1840 (613) 764-2841 Faz/Mikopieur: (813) 764-3685 1-800-267-8280

USE PERMIT

Permit Nº	
CAL-94-07	

12 12	
	6
Township .	CVIEDOVILY

Date January 31, 1997	Owner Township of Caledonia	
Installer Leroux et frères	MOE Licence Number 10-4-784-93	
1. Work authorized by the Certificate of Approval has been satisfactorily completed and includes: a) the installation of a prefabricatedtank		
As per the design drawings of Lascelles Engineering Ltd. 185-1		
IT IS IMPORTANT TO KEEP THESE DOCUMENTS FOR FUTURE TOWNSACTIONS.		
3. It is the owner's responsibility to:		
Backfill the system and stabilize Shape the leaching bed to shed water all slopes Other:		
USE PERMIT Under Section 78 of the Environmental Protection Act, 1990 and subject to the provisions of the Act and Regulations, this Use Permit is hereby issued to		

NOTE: Section 76 of the Act stipulates that no change can be made to any building(s) or structure(s) in connection with which this sewage system is used, if the operation or effectiveness of the sewage system will or is likely to be affected by the change, unless a new Certificate of Approval is obtained.

Section 139 of the Act provides that an applicant may appeal the imposition of terms and conditions by a Director on issuing a permit. Written notice of appeal must be forwarded to the Director and to the Environmental Appeal Board, 112St. Clair Ave. West, Suite 502, Toronto, Ontario M4V 1N3 within 15 days of receipt of the permit.

Conditions of approval CAL-94-07

- 1. The sewage disposal system must be constructed in accordance with plans L85-1, L85-2, DC493-1, DC493-2 and DC493-3 revised Febryary 14, 1996 as prepared by Lascelles Engineering Limted and the Groundwaer Impact Assessment Report dated August 1995 as [re[ared by SauriolEnvironmental Incorporated and all addendums.
- 2. The maintenace program for the sewage disposal system must be submitted to the Eastern Ontario Health Unit for review and comment.
- 3. The conditions of approval set out in the MOEE letter, dated February 20, 1996, to Lascelles Engineering Limited must be fulfilled.

Part VIII Director

May 25 1996

Owner/Agent

Date

MEMORANDUM

Project: 2151

Phase: 100

Date: Feb.23/96

Page 1 of 1

From: Stephen Babb

To: E.O.H.U Attn: Sylvain Diotte

Subject:

Communal Sewage System Proposal

Hamlet of St. Bernardin Township of Caladonia

CAL-94-07

We have reviewed the above noted proposal and have the following comments:

- 1. We find the proposal to be satisfactory subject to the following conditions:
 - The sewage disposal system must be constructed in accordance with plans L85-1, L85-2, L85-3, DL493-1, DL493-2, and DL493-3 revised February 14, 1996 as prepared by Lascelles Engineering Limited, and the Groundwater Impact Assessment Report dated August 1995 as prepared by Sauriol Environmental Incorporated.
 - ii) The maintenance program for the sewage disposal system must be submitted to the Eastern Ontario Health Unit for review and comment.
 - iii) The conditions of approval set out in the MOEE letter, dated February 20, 1996, to Lascelles Engineering Limited must be fulfilled.

Nov. 86 1996 10:31AM P1

Ninistry of Environment and Energy

l'Environnement et de l'Énergie

133 Dialion Avenue 133 avenue Dallon P O Box 620 Kingston ON K7L 4X5 Kingston ON K71_4X6

1 613/549-4000

1 800/257-0974 Fox: 812/548-6908

February 20, 1996

Post-II Far Note 7671E	BRZINCH SHOW 2
M. Romane	From Parks
Co Papi	Ch.
Phone #	Fhore s
FA> P	Fax 8

Lascelles Engineering Limited 870 James Street HAWKESBURY, Ontario K6A 2W8

Attention: Manon C. Rodrigue, P. Ene.

Dear Ms Rodrigue:

Re: TOWNSHIP OF CALEDONIA - HAMLET OF ST. BERNARDIN

Your most recent submission dated February 5, 1996 has been reviewed by Regional staff, and the following comments are offered for your consideration,

The groundwater monitoring program that you have proposed includes the installation of five new piczometers and twice yearly (June & September) sampling for sodium, nitrate, phosphorus, DOC, pH and DO for a period of two years. In addition to what is being proposed, the Ministry has the following requirements:

- the proposed locations for the piezometers (including depth/hydrostratigraphic unit) must be finalized and presented on a suitable diagram for approval
- the two year time frame for sampling he removed while maintaining the option of changing the requirements of the program following review of the data acquired during the first two years of operation. This ensures that monitoring continues and any changes to the monitoring program would have to be specifically approved
 - the analytical parameter list be expanded to include nitrite and ammonia

In my previous letter of November 24, 1995, I indicated the need to address potential surface water impacts from the septic system's groundwater discharge on the "no name" creek. This information is not contained in your most recent submission, nor is there a proposed sampling program for the no name creek.

The Region will agree to the creation of a CAZ through the acquisition of groundwater rights. It is felt that the proposed system is the best treatment that can be provided within the available economic means to correct an existing contamination problem, and has the support of both the local Health Unit and the Township Council. As the plume develops, the monitoring program will demonstrate the adequacy of the CAZ. The available contingency options include expanding the groundwater easement or providing additional effluent treatment to maintain compliance with the Reasonable Use Guideline.

As conditions of our approval of this approach however, the following additional information must be provided prior to operation of the sewage works:

- the groundwater monitoring program amended as outlined in the first part of this letter
- impacts of the groundwater discharge on "no name" creek must be addressed and submitted for review
- a surface water monitoring program be developed and submitted for approval
- a legal description of the lands affected, and a definition of the legal means by which the casement will be established and maintained

If you have any further questions or comments, please feel free to contact me.

Yours truly:

Barry D. Burns, P.Eng.

Regional Approvals Engineer

Technical Support Section

Eastern Region

BDB/sh

cc: Sylvain Diotte, Eastern Ontario Health Unit


- 'Ivan Lee, OCWA

Gerry Murphy, Cornwall District Office

CONSULTING-ENGINEER INGENIEUR-CONSEIL

GAËTAN H. LASCELLES

L89-103 December 6, 1996

Eastern Ontario Health Unit P.O. Box 338 41 Racine Street Casselman ON K0A 1M0

Attention: Mr. Sylvain Diotte, Part VIII Director

Dear Sir:

Re: Communal Sewage Collection and Disposal System
Hamlet of St-Bernardin, Township of Caledonia

Provincial Direct Grant Sewage System Project No. 52-0018-01

Enclosed please find a maintenance program for the above referenced project. This is resubmitted with revision as per memo from Stephen Babb, P.Eng. of DS-Lea Associates Ltd dated November 13,1996.

Operation and Maintenance

- 1. The sewage disposal system will be maintained and operated by the Township of Caledonia for the residents now being connected to it. A copy of the brochure entitled "Care and Feeding of your Septic System" will be distributed to all residences connected to the communal sewage disposal system.
- 2. The electrical panels for the pumping station and dosing chamber will be visually inspected weekly.

L89-103 cont'd December 6, 1996

- 3. The septic tanks will be pumped out once every year. The sewage pumps will be visually inspected every year.
- 4. The sewer lines will be cleaned out every second year. The manholes will be visually inspected once a month for a period of one year to confirm the satisfactory functioning of the sewers.
- 5. The grass over the septic tile beds will be maintained during the growing season by mowing once per week.
- 6. The access road will be kept clear of snow during the winter time in order to provide access to the sewage disposal system and to the pumping station, dosing chamber and septic tanks.
- 7. As per conditional approval from the MOEE, 5 piezometers will be sampled twice per year and analyzed for sodium, nitrate, phosphorus, dissolved organic carbon, pH, nitrite, ammonia and dissolved oxygen.
- 8. As per conditional approval from the MOEE, the no-name creek will be sampled twice per year at the downgradient location and the Caledonia Creek will be sampled at the upstream side of the box culvert crossing Concession 6 road. The samples collected will be analyzed for total phosphorus, nitrogen nutrients, unionized ammonia, pH, chlorides, conductivity and temperature.
- 9. A yearly letter report will be prepared and submitted to the EOHU and MOEE.

Final Inspection

The final inspection of the sewage disposal system was performed by Pierre Savard of DS-Lea Associates Ltd on October 30, 1996. We are also responding to his comments.

1. Padlocks were installed on all the covers to the septic tanks, pumping station and dosing chamber.

L89-103 cont'd December 6, 1996

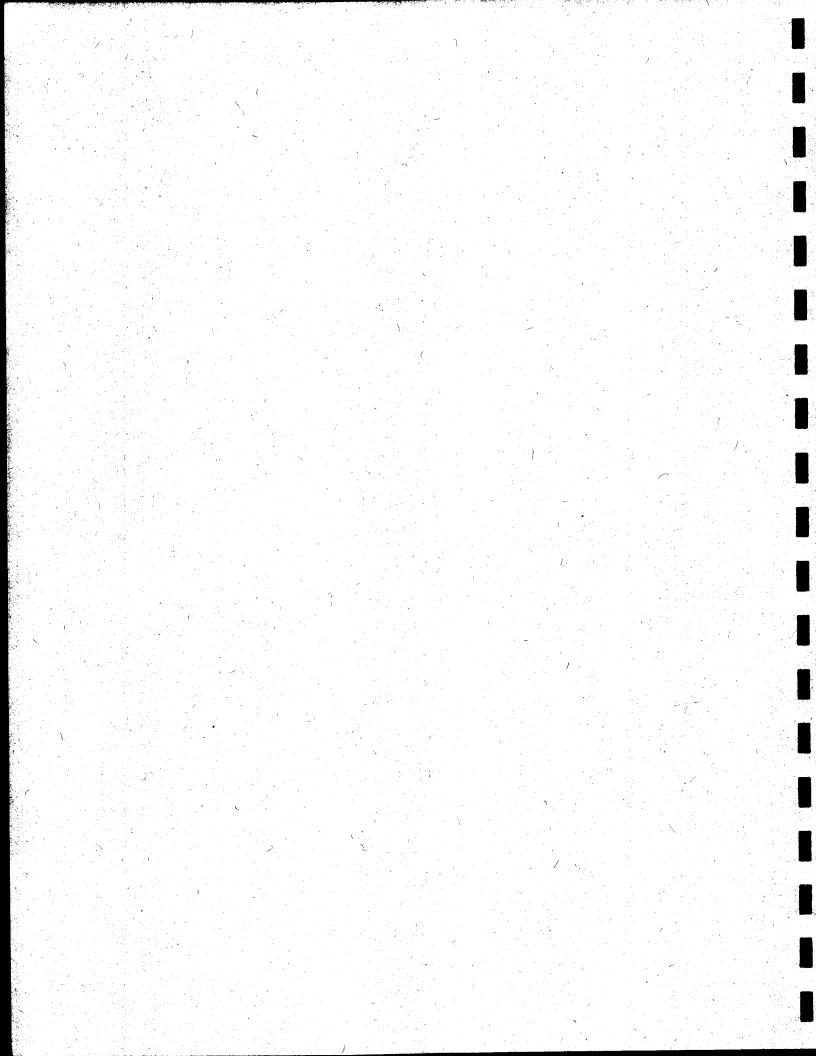
- 2. Bug screens were installed on the vents to the pumping station and dosing chamber.
- 3. We have enclosed a copy of the "As-built" plans for the sewage disposal system.
- 4. The extent of the mantle was verified and was built as shown on the "As-built" plans.
- 5. A swale will be constructed in the spring when the site work continues. The grass seeding will also be performed in the spring.

These comments complement your final inspection and the use permit can now be issued.

We trust you will find this information to your satisfaction and we remain,

Yours truly,

L'ingénierie LASCELLES engineering limited


per Manon Fodrique

Manon C. Rodrigue, P.Eng.

MCR/encl.

cc: Joanne Bougie-Normand, Clerk-Treasurer, Township of Caledonia Nitti Subramaniam, P.Eng., Project Engineer, OCWA Pierre Savard, Inspector, DS-Lea Associates Ltd, Casselman Stephen Babb, P.Eng., DS-Lea Associates Ltd, Ottawa

APPENDIX C RECORD OF BOREHOLE SHEETS

LIST OF ABBREVIATIONS

The abbreviations commonly employed on Records of Boreholes, on figures and in the text of the report are as follows:

I.	SAMPLE TYPE	111.	SOIL DESCRIP	TION	
AS-	Auger sample		(a)	Cohesionless Soils	•
BS	Block sample				
CS	Chunk sample	Density Inc	lex	N	
DO	Drive open	(Relative D		Blows/300 mm	
DS	Denison type sample			Or Blows/ft.	
FS	Foil sample	Very loose		0 to 4	
RC	Rock core	Loose		4 to 10	
SC	Soil core	Compact		10 to 30	
ST	Slotted tube	Dense		30 to 50	
TO	Thin-walled, open	Very dense		over 50	
TP	Thin-walled, piston				
WS	Wash sample		(b)	Cohesive Soils	
		Consistenc		$C_{u2}S_u$	
II.	PENETRATION RESISTANCE		Kı		<u>Psf</u>
		Very soft	0 to		to 250
Standard	Penetration Resistance (SPT), N:	Soft	12 to		0 to 500
	The number of blows by a 63.5 kg. (140 lb.)	Firm	25 to		to 1,000
	hammer dropped 760 mm (30 in.) required	Stiff	50 to	• • •	0 to 2,000
	to drive a 50 mm (2 in.) drive open	Very stiff	100 to		0 to 4,000
	Sampler for a distance of 300 mm (12 in.)	Hard	Over		er 4,000
					,
Dynamic	Penetration Resistance; N _d :	IV.	SOIL TESTS		
	The number of blows by a 63.5 kg (140 lb.)		•		
	hammer dropped 760 mm (30 in.) to drive	w	water content		
	Uncased a 50 mm (2 in.) diameter, 60° cone	W_p	plastic limited		
	attached to "A" size drill rods for a distance	\mathbf{w}_1	liquid limit		
	of 300 mm (12 in.).	С	consolidation (oedo		
		CHEM	chemical analysis (r		
PH:	Sampler advanced by hydraulic pressure	CID		pically drained triaxial test ¹	
PM:	Sampler advanced by manual pressure	CIU		pically undrained triaxial test	
WH:	Sampler advanced by static weight of hammer		with porewater pres		
WR:	Sampler advanced by weight of sampler and	D_R	relative density (spe	ecific gravity, G _s)	
	rod	DS	direct shear test		
		M	sieve analysis for pa		
Peizo-Co	one Penetration Test (CPT):	MH		hydrometer (H) analysis	
	An electronic cone penetrometer with	MPC	modified Proctor co		
	a 60° conical tip and a projected end area	SPC	standard Proctor co		
	of 10 cm ² pushed through ground	OC	organic content test		
	at a penetration rate of 2 cm/s. Measurements	SO₄		ter-soluble sulphates	
	of tip resistance (Q ₁), porewater pressure	ÜC	unconfined compres	ssion test	
	(PWP) and friction along a sleeve are recorded	UU	unconsolidated und		
	Electronically at 25 mm penetration intervals.	V	field vane test (I V.	laboratory vane test)	
	Licenomeany at 25 mm penetration intervals.	•	neid valle test (E v -	lactification y value test)	

Note:

^{1.} Tests which are anisotropically consolidated prior shear are shown as CAD, CAU.

LIST OF SYMBOLS

Unless otherwise stated, the symbols employed in the report are as follows:

1.	GENERAL		(a) Index Properties (cont'd.)
π	= 3.1416	w	water content
	logarithm of x	\mathbf{w}_1	liquid limit
	g x, logarithm of x to base 10	W _p	plastic limit
	Acceleration due to gravity	l_p	plasticity Index=(w ₁ -w _p)
g t	time	. Ws	shrinkage limit
F	factor of safety	l_L	liquidity index= $(w-w_p)/I_p$
v	volume	I _c	consistency index= $(w_1-w)/I_p$
w	weight	e _{max}	void ratio in loosest state
	Worgh	e _{min}	void ratio in densest state
II.	STRESS AND STRAIN	I _D	density index-(e _{max} -e)/(e _{max} -e _{min})
	DIRECO /III DIRIIII	-	(formerly relative density)
γ	shear strain		
Δ	change in, e.g. in stress: Δ σ'		(b) Hydraulic Properties
£ 3	linear strain		
	volumetric strain	h	hydraulic head or potential
٤,	coefficient of viscosity	q	rate of flow
η	Poisson's ratio	V	velocity of flow
. V	total stress	i	hydraulic gradient
σ .		k	hydraulic conductivity (coefficient of permeability)
ď	effective stress (o' = o"-u) initial effective overburden stress	i	seepage force per unit volume
o, o		J	seepuge p
$\sigma_1\sigma_2\sigma_3$	principal stresses (major, intermediate, minor)		(c) Consolidation (one-dimensional)
σ_{oct}	mean stress or octahedral stress		in the (manually consolidated range)
	$= (\sigma_1 + \sigma_2 + \sigma_3)/3$	$C_{\mathfrak{c}}$	compression index (normally consolidated range)
. τ	shear stress	C_{r}	recompression index (overconsolidated range)
u	porewater pressure	C,	swelling index
E	modulus of deformation	C,	coefficient of secondary consolidation
G	shear modulus of deformation	m_v	coefficient of volume change
Κ .	bulk modulus of compressibility	Cv	coefficient of consolidation
		T_{v}	time factor (vertical direction)
III.	SOIL PROPERTIES	U	degree of consolidation
		σ_{p}'	pre-consolidation pressure
	(a) Index Properties	OCR	Overconsolidation ratio=o'p/o'vo
ρ(γ)	bulk density (bulk unit weight*)		(d) Shear Strength
$P_{d}(\gamma_{d})$	dry density (dry unit weight)		most and residual charge strength
$\rho_{\rm w}(\gamma_{\rm w})$	density (unit weight) of water	$ au_{ m p} au_{ m r}$	peak and residual shear strength
$\rho_s(\gamma_s)$	density (unit weight) of solid particles	φ'	effective angle of internal friction
γ	unit weight of submerged soil $(\gamma = \gamma - \gamma_w)$	δ	angle of interface friction
$\mathbf{D}_{\mathbf{R}}$	relative density (specific gravity) of	μ	coefficient of friction=tan δ
	solid particles (D _R = p _s /p _w) formerly (G _s)	c'	effective cohesion
е	void ratio	c_{u,S_u}	undrained shear strength (\$\phi=0\$ analysis)
n	porosity	p	mean total stress $(\sigma_1 + \sigma_3)/2$
S	degree of saturation	p'	mean effective stress $(\sigma'_1 + \sigma'_3)/2$
-		g	$(\sigma_1 - \sigma_3)/2$ or $(\sigma_1^* - \sigma_3)/2$
* "	Density symbol is p. Unit weight	g _u	compressive strength $(\sigma_1 - \sigma_3)$
	symbol is γ where γ =pg(i.e. mass	St	sensitivity
	density x acceleration due to gravity)	~(•
	density x acceleration due to gravity)		Notes: 1. τ=c'σ' tan []
			2. Shear strength=(Compressive strength)/2

RECORD OF BOREHOLE: BH 03-1

SHEET 1 OF 1

LOCATION: See Site Plan

BORING DATE: August 6, 2003

DATUM:

SAMPLER HAMMER, 64kg; DROP, 760mm

PENETRATION TEST HAMMER, 64kg; DROP, 760mm

	5	SOIL PROFILE			SA	MPL		RESIS	RIC PEN FANCE,	ETRATIONS	ON 10.3m	1	HYDRA	ULIC Co k, cm/s	ONDUC.	ΓΙ VIT Υ,	Ŧ	2 آپ	PIEZOMETER
	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	BLOWS/0.3m	SHEAR Cu, kPa			80 8 nat V. + em V. ⊕		10 WA	TER C		PERCE		ADDITIONAL LAB. TESTING	OR STANDPIPE INSTALLATION
+	ш	GROUND SURFACE	Š	,	<u> </u>	<u> </u>	-	2	0 4	0 6	8 <u>0</u>	0	10) 2	0 3	0 4	10 T	-	
t	Τ			64.75 0.00		-						_			-			-	
		Brown fine SAND		64,60 0.15													ļ		Δ
l		 		64.45													j		Steel Protective
l		Grey brown SILTY SAND/SANDY SILT		0.30 64.32															Casing set in Bentonite Seal
l		Very loose grey brown SILTY SAND		0.43							;								立
١	ŀ				1	AS													. (2
					_	ļ													[4
	Stem																	,	
	100																		32 mm Diam.
	Diam.					50 DO	3		i										32 mm Diam. PVC # 10 Slot Screen
ľ	E	Grey brown to grey with death SILTY		63.53 1.22													:		
	8	CLAY, with sandy silt layers			_	-	١												
١]													
1										Ì						ŀ			
	İ																Į		
1					3	50 00	WH												Native Backfill
					١						ŧ								
				62.62															
		End of Borehole		2.13												Ì		ļ ·	Water level in
			1			İ		-			İ								screen at elev. 64.64m Oct.
						ļ													2003
					l			1									ļ		Water level in screen at elev.
			1		1													١,	64.24m Nov. 2003
					١														:
					1										Į				
1															[
1					1										İ				
١			1	'												1			
ı																			
1			1		Ì	1			1]		
İ			1																
			İ			İ	1.	ļ	1										
								İ	1										
1																			
-					İ														
				1															
								1	1								1		
											1					1	}		
- 1			1		1		1	1		1		1	1		1		1	1	
-				1	1	1	1	i i	1	1	1	1	'		!			1	l .

DEPTH SCALE

1:25

Golder Associates

LOGGED: P.A.H.
CHECKED: C.D.V.

RECORD OF BOREHOLE: BH 03-2

SHEET 1 OF 1

LOCATION: See Site Plan

BORING DATE: August 6, 2003

DATUM:

SAMPLER HAMMER, 64kg; DROP, 760mm

PENETRATION TEST HAMMER, 64kg; DROP, 760mm

줮	SOIL PROFILE			SA			DYNAMIC PENETI RESISTANCE, BL	OWS/0.3n	•	, Ι	HYDRAULK k, cr			₹₹	PIEZOMETER
BORING METHOD		STRATA PLOT	ELEV.	<u>د</u>	TYPE	8	20 40	60	80		10 ⁴		0 ⁻⁴ 10 ⁻³ PERCENT	ADDITIONAL LAB. TESTING	OR STANDPIPE
S S	DESCRIPTION	ATA :	DEPTH	NUMBER	Σ	8	SHEAR STRENGT Cu, kPa	rem \	. 6 U-	ŏ				88	INSTALLATION
8		STR	(m)	Z		핆	20 40	60	80	\dashv	10		80 40	<u> </u>	
_	GROUND SURFACE		65.09							\dashv				 	Protective Steel 1.
	TOPSOIL		0.00												Protective Steel 1 Casing set in Cement Grout
	Loose brown fine SAND, trace silt		64.89 0.20					1		ı					
								ļ							
								İ			1				Bentonite Seal
								-	i					1	
															Silica Sand
Steril)									ł						Sinca Sand
		<u> </u>													
Power Auger	Brown SILTY SAND/SANDY SILT		64.02 1.07	1	50 DO	9			-						32 mm Diam. PVC # 10 Slot
	Complemental TV Cl AV with the first		63.87	1									1	1	32 mm Diam. PVC # 10 Slot Screen
200	Grey brown SILTY CLAY, with silty fine sand and sandy silt layers		1.22											1	
1			-	Г											
				T	1										
										.					Native Backfill
				2	50 DO	wH									Native Backfill
			62.9												8
	End of Borehole		2.13	1]								
															Water level in screen at elev.
															65.07m Oct. 2003
					1									1	
				1											
														1	
												ľ			
															•
			1					.							
		1													
						1			-			1			
								1							
														1	
														1	
				1											
				1											
ļ			1	1		1	1 1 1				1		i l	-	

DEPTH SCALE 1:25

LOGGED: P.A.H. CHECKED: C.D.V.

PROJECT: 03-1120-717 LOCATION: See Site Plan

RECORD OF BOREHOLE: BH 03-3

SHEET 1 OF 1

DATUM:

SAMPLER HAMMER, 64kg; DROP, 760mm

BORING DATE: August 6, 2003

PENETRATION TEST HAMMER, 64kg; DROP, 760mm

ا . إ	웃	SOIL PROFILE		,	SA	MPL	ES	DYNAMIC PENETRA RESISTANCE, BLOW	/S/0.3m <	HYDRAULIC CONDUCTIVITY, K, cm/s
DEPTH SCALE METRES	BORING METHOD	DESCRIPTION	PLOT	ELEV.	BER	'n	,70.3m	20 40 SHEAR STRENGTH	60 80 '	No. cm/s No. cm/s
, Z	BORIN	DESCRIPTION	STRATA PLOT	DEPTH (m)	NUMBER	TYPE	BLOWS/0.3m	SHEAR STRENGTH Cu, kPa 20 40	rem V. 😝 U - O	
. 0		GROUND SURFACE	"	65.29				1 1	30 30	10 20 30 40
		Dark brown TOPSOIL		0.00						Protective Steel :
	,	Loose to compact brown SAND, trace silt		64.99 0.30	-					Bentonite Seal ♀
1	ger slow Stem)	Compact grey brown SILTY SAND		64.38 0.91	1	50 DO	12			Silica Sand
	Power Auger 200 mm diam. (Hollow Stern)	Grey brown to grey with depth SILTY CLAY, with silty sand layers		63.74 1.55	2	50 DO	2			32 mm Diam. PVC # 10 Slot Screen
2										
		End of Borehole		62.55 2.74	3	50 DO	WH			Bentonite Seal
3										Water level in screen at elev. 65.07m Oct. 2003
										Water level in screen at elev. 64.54m Nov. 2003
4										
5										

RECORD OF BOREHOLE: BH 03-4

SHEET 1 OF 1

LOCATION: See Site Plan

BORING DATE: August 7, 2003

DATUM:

SAMPLER HAMMER, 64kg; DROP, 760mm

PENETRATION TEST HAMMER, 64kg; DROP, 760mm

ξ	₹	SOIL PROFILE			SA	MPL	ES.	RESIS	AIC PENE TANCE, B	LOWS	.3m	Ι.		ULIC CC k, cm/s			Ţ	₹ <u>₽</u>	PIEZOMETE
COUTSM SMIGOR	ž		힏		œ		8	2	· L_				10					ADDITIONAL LAB. TESTING	OR STANDPIPE
4	2	DESCRIPTION	TAF	ELEV. DEPTH	NUMBER	TYPE	BLOWS/0.3m	SHEAF Cu, kP	STRENG	TH na re	atV. + mV. ⊕	Q - ● U - Ŏ		TER CO				98	INSTALLATIO
Š	Ş		STRATA PLOT	(m)	ž		윊		0 40			0	10 10	20	_				
_	┪	GROUND SURFACE	-	64.75		\vdash			Ĭ	Î									
	П	Dark brown TOPSOIL		0.00	Г	T	T										-		
								İ		ł					-				⊽
	П			1	l	l	l			İ				1					Bentonite Seal
	Ιİ			64.35															Δ
		Grey brown fine SAND, trace to some silt		0.40				ļ											
	П									1									
				63.99					1	Ī								1	Silica Sand
	Stern)	Grey brown SILTY SAND	11	0.76	T	1							1 1	ļ				1	1
	Ì≩l			1			١.					<u>.</u>							
Aug	륃			63,66		50 DO	3			i									32 mm Diam. PVC # 10 Slot
Power Auge	Die	Grey brown SILTY CLAY, with silty sand and sandy silt layers/seams		1.07		P													Screen
٦	E					1						1						1] . [
	200			1	\vdash	4		1]]
					L														Silica Sand
],	
					2	50 DC	w	1										1	Native Backfill
						1													.
																		1	
H		End of Borehole	True Contract Contrac	62.6 2.1	\$	十	十	1											· '
•																		·	Water level in
																			screen at elev. 64.52m Oct. 2003
													1						
				1								1			ĺ '				Water level in screen at elev.
			1				1					[1	.	64.38m Nov. 2003
													1.			1	1		
												1	1					ĺ	
				1														[
				1									1	1		1	1		
								1	1		1			1	1	[
															1				
													1						
																1			
l																			
															l		1		
١			1				-							1					
																ļ			
							ļ												
				1								1							
								1											1
				1									1		1			1	
							-							1			1		,
			1	1														1	
١							١					1			.				
Н																			•

Golder ssociates

RECORD OF BOREHOLE: BH 03-5

SHEET 1 OF 1

LOCATION: See Site Plan

BORING DATE: August 7, 2003

DATUM:

SAMPLER HAMMER, 64kg; DROP, 760mm

PENETRATION TEST HAMMER, 64kg; DROP, 760mm

5		SOIL PROFILE	ᆵ		SAI		М	DYNAMIC PERESISTANCE			80 ,	HYDRA	k, cm/	10 ⁻⁶	10-4	105	, 1	NAL	PIEZOMETER OR
CONTEN ONIGO	ING ME	DESCRIPTION	STRATA PLOT	ELEV.	NUMBER	TYPE	BLOWS/0.3m	20 SHEAR STR Cu, kPa		1			ATER (NT PE	RCEN'	Ť :	ADDITIONAL LAB. TESTING	STANDPIPE INSTALLATION
18	5		STR/	(m)	Ž		읾	20	40	60	80		0	20	30	40			
۰		GROUND SURFACE	255	64.81		-	Н		┼		┼		<u> </u>	┼	+	\dashv		_	Protective Steel
		TOPSOIL			1	AS													Casing set in Cement Grout
		Loose grey brown fine SAND, trace to some silt		0.40	2	AS						· .							Bentonite Seal Silica Sand
1 9	ollow Stem)	Grey brown SILTY SAND		64.0															
Power A	200 mm Diam. (Hollow	Grey brown SILTY CLAY, with silty sand layers		1.0	3	50 DC	2									-			32 mm Diam. PVC # 10 Slot Screen
2					•	SKDK	S w												Native Backfill
		End of Borehole		62.1												-			Water level in screen above ground surface at elev. 64.82m Oct. 2003
3																			
4						-													
ļ																			
5																			

DEPTH SCALE 1:25 Golder Associates

LOGGED: P.A.H.
CHECKED: C.D.V.

RECORD OF BOREHOLE: BH 03-6

SHEET 1 OF 1

LOCATION: See Site Plan

BORING DATE: August 7, 2003

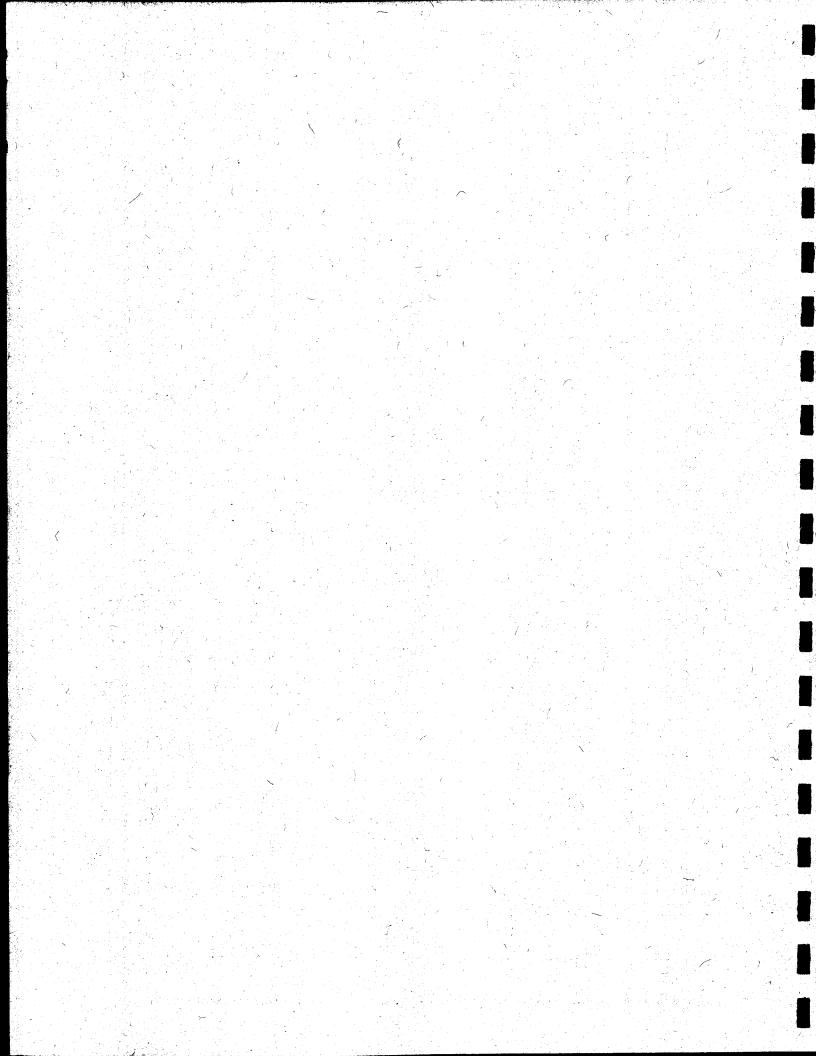
DATUM:

SAMPLER HAMMER, 64kg; DROP, 760mm

PENETRATION TEST HAMMER, 64kg; DROP, 760mm

1	. 7																
. 월	3	SOIL PROFILE			S/	AMP	LES	DYNA	IC PENETRA ANCE, BLOW	TION S/0.3m	`\	HYDRAUL	IC CONDU	ICTIVITY,	Т	T.	
METRES BORING METHOD		_ 	101		l _a	Γ	뚫	20		60	80 '	104	10°5		₁₀ .,]	ADDITIONAL LAB. TESTING	PIEZOMETER OR
₹ E		DESCRIPTION	STRATA PLOT	ELEV.	, WE	TYPE	BLOWS/0.3m	SHEAR	STRENGTH	nat V.	+ Q- •		R CONTE		┷.	- EE	STANDPIPE
2	3		TR.	DEPTH (m)	₹	1	Š				9 U-O	Wp⊩			W.	₹3	INSTALLATION
	7	GROUND SURFACE	+-	 	⊢	├	H	20	40	60	80	10	20	30	40	ļ	
°	1	TOPSOIL		64.54 0.00	 	┢	Н			+	-				 	-	6.7
11	ŀ	Red brown to grey brown fine SAND,		64.39	L					1				ł	Ì		
	١	trace sit	,	0.15	1		l	ĺ		1							Protective Steel
11	Į				١. ا								Į.			l	Casing set in Cement Grout
	İ	•	100		1	AS			1	1							Cement Grout
	1		18.3			١,		ľ	ļ	1	1 1	i	-				
11	1				Н	1			Ì		1 1				l		1
	L	·	×**	63.72	Ш					İ]		Silice Sand
	1	Grey brown SILTY SAND		0.82											•		
•	ı		3.					- 1				ļ					
	h	Stiff layered grey brown SILTY CLAY, with sitty sand seams/layers	aad	63.47 1.07	2	50 DO	5	. [ŀ						'		
	1	with silty sand seams/layers							İ]] [.		ł	İ		
	200										.						Bentonite Seal
Auger	010				\vdash]]		-
¥ 5	Ē				Ц		- ['							I ,
8 8	5						- [- 1									Silica Sand
Power Auger	3]		-				[4
$\ \ $					3	50 00	2			1							[4]
													-				組
				ĺ		1											俎
			齫	ł	\dashv	ļ		-		1							湖
				ļ	_	- 1				1							泪
	1					ĺ				1							32 mm Diam. PVC # 10 Slot Screen
	1															ľ	Screen
H	1				4	50	WH	1									川
				- 1			1		1	1		-					1
										1						ļ	組
	1			Ī	\exists				İ						l		個
μ.	t	End of Borehole	1999	61.49 3.05	+	+	\dashv						ŀ				进
						-			ĺ						- 1		Motor Investiga
								l	ļ							الم	Vater level in creen at elev.
		· ·				ļ				}]]6	creen at elev. 3,24m Nov. 003
	İ			.													
	l			1			-								- 1		
				-										1	1		
		·		- 1													
															1		
				. [ļ		-		- 1		
												-	ĺ			-	
												,					
				Į.													
									f i								
					1						1						
	1																
							1										
						1									j		

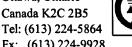
1:25


BOREHOLE 03-1120-717.GPJ GLDR CAN.GDT 31/3/04

Golder Associates

LOGGED: P.A.H. CHECKED: C.D.V.

APPENDIX D


ANALYSIS OF PUMPING/RECOVERY
DATA SHEETS

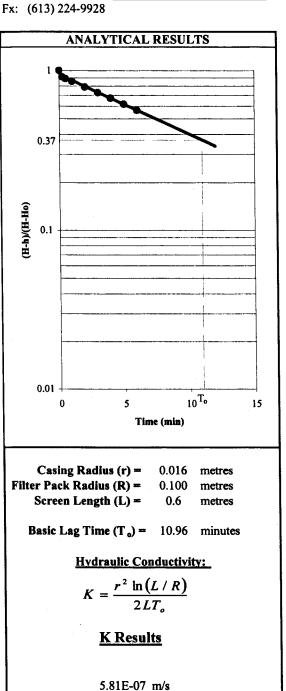
ANALYSIS OF PUMPING/ RECOVERY TEST DATA

92%

1796 Courtwood Cr. Ottawa, Ontario Canada K2C 2B5

PROJECT	INFORMATION
Project Name:	<u> </u>
St. Be	rnardin Sewage Works
Project Number	<u>:</u>
	04-1120-708
Site Location:	
	St. Bernardin
Date of Test:	
	19-May-04

WELL INFORMATIO	N
Well ID:	03-1
Static Depth to Water (m):	1.0
Screen Length (m):	0.6
Well Diameter (m):	0.0
Filter Pack Diameter (m):	0.2


Wen Diameter (m).									
Filter P	Filter Pack Diameter (m): 0.2								
A	NALYTICAL METH	OD							
Method	: Hvorslev (1951)								
Referen	ce: Freeze & Cherry,	1979							
Calcula									
(1)	$q(t) = \pi r^2 \frac{dh}{dt} = FK(t)$	H-h)							
where:	•								
	r = casing radius								
	h = hydraulic head								
	t = time								
	F = shape factor								
İ	K = hydraulic conduc	tivity							
	H = static hydraulic h	ead							
(2)	$T_o = \frac{\pi r^2}{FK}$								
where:	$T_o = basic time lag$								
solution	2) is substituted into (1 n to the resulting ordinantial equation is:								
(3)	$\frac{H-h}{H-H_o}=e^{-t/T_o}$								
where:	$H_0 = \text{hydraulic head a}$	at $t = 0$							
1	R > 8, Hvorslev has eva								
	pe factor, F. The result	ing							
_	sion for K is:								
(4)	$K = \frac{r^2 \ln(L/R)}{r^2}$								

 $2LT_o$

R = radius of filter pack

where: L = screen length

RAW	DATA
	Depth to
Time (s)	-
0	1.9
15	1.82
30	1.8
60	1.77
120	1.71
180	1.655
240	1.605
300	1.555
360	1.510
480	1.300
600	1.16
720	1.12
900	1.085
*	*
*	*
*	*
	*
*	*
*	*
	*
	*
	*
	*
	*
*	*
	*
*	*
	*
	*
*	*
*	*
*	*
	*
;	*
*	*
*	*
*	*
	*
•	*
	*
	*
*	*
*	*
*	*
*	*
:	*
*	*

5.02E-02 m/day

5.8E-05 cm/s

m/yr

18.3

ANALYSIS OF PUMPING/ RECOVERY TEST DATA

97% 1796 Courtwood Cr. Ottawa, Ontario Canada K2C 2B5

Tel: (613) 224-5864 Fx: (613) 224-9928

PROJECT INFORMATION	
Project Name:	
St. F	Bernardin Sewage Works
Project Number	
	04-1120-708
Site Location:	
	St. Bernardin
Date of Test:	
	19-May-04

WELL INFORMATION		
Well ID:	03-2	
Static Depth to Water (m):	1.1	
Screen Length (m):	0.4	
Well Diameter (m):	0.0	
Filter Pack Diameter (m):	0.2	

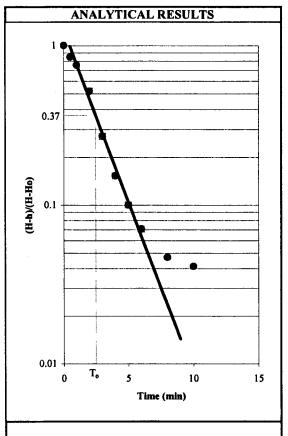
Filter P	ack Diameter (m):	0.2
A	NALYTICAL METH	OD
Method	l: Hvorslev (1951)	
Referen	ice: Freeze & Cherry,	1979
Calcula	tions:	
(1)	$q(t) = \pi r^2 \frac{dh}{dt} = FK(t)$	H-h)
where:	q = rate of inflow	
ļ	r = casing radius	
	h = hydraulic head	
	t = time	
1	F = shape factor	
	K = hydraulic conduct	tivity
	H = static hydraulic he	ead
(2)	$T_o = \frac{\pi r^2}{FK}$	
where:	T_0 = basic time lag	
When (2) is substituted into (1)), the
	to the resulting ordina	
differen	tial equation is:	•
(3)	$H-h$ = $e^{-t/T_{\star}}$	
	$\frac{H-h}{H-H_o}=e^{-t/T_o}$	
where:	H _o = hydraulic head a	t t = 0

For L/R > 8, Hvorslev has evaluated

 $K = \frac{r^2 \ln(L/R)}{\ln(L/R)}$

2LT_o

the shape factor, F. The resulting


expression for K is:

(4)

	Depin to
Time (s)	Water (m)
0	1.95
30	1.82
60	1.74
120	1.54
180	1.33
240	1.23
300	1.185
360	1.16
480	1.140
600	1.135
*	*
*	*
*	*
*	*
*	*
*	*
*	*
*	*
*	*
*	*
	*
*	
*	
*	*
*	*
*	*
*	*
*	*
*	*
*	*
*	*
*	*
	*
	*
*	*
*	*
*	*
*	*
*	*
*	*
	*
	*
1 .	*
*	*
	*
*	
*	*
*	*
*	*

RAW DATA

Depth to

Casing Radius (r) = 0.016 metres
Filter Pack Radius (R) = 0.100 metres
Screen Length (L) = 0.4 metres

Basic Lag Time $(T_0) = 2.48$ minutes

Hydraulic Conductivity:

$$K = \frac{r^2 \ln \left(L / R \right)}{2LT_o}$$

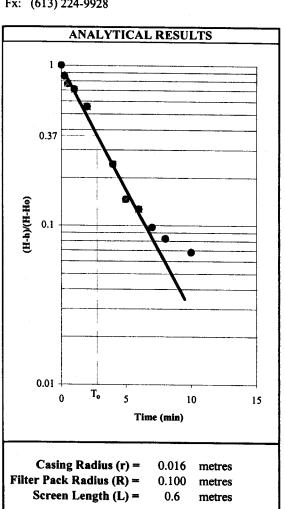
K Results

2.99E-06 m/s 0.25807 m/day 94.2 m/yr 0.0003 cm/s

ANALYSIS OF PUMPING/ RECOVERY TEST DATA

95% 1796 Courtwood Cr. Ottawa, Ontario Canada K2C 2B5

Tel: (613) 224-5864 Fx: (613) 224-9928


PROJECT	INFORMATION
Project Name:	
St. Ber	mardin Sewage Works
Project Number:	<u> </u>
	04-1120-708
Site Location:	
	St. Bernardin
Date of Test:	
	19-May-04

WELL INFORMATION		
Well ID:	03-3	
Static Depth to Water (m):	1.4	
Screen Length (m):	0.6	
Well Diameter (m):	0.0	
Filter Pack Diameter (m):	0.2	

Filter P	Pack Diameter (m):	0.2
A	NALYTICAL METH	OD
Method	i: Hvorslev (1951)	
Referei	nce: Freeze & Cherry,	1979
Calcula	ations:	
(1)	$q(t) = \pi r^2 \frac{dh}{dt} = FK(H)$	<i>I−h</i>)
where:	q = rate of inflow	
	r = casing radius	
1	h = hydraulic head	
	t = time	
	F = shape factor	
	K = hydraulic conduct	ivity
	H = static hydraulic he	ad
(2)	$T_o = \frac{\pi r^2}{FK}$	
where:	T_0 = basic time lag	
When (2) is substituted into (1)	, the
solution	n to the resulting ordinar	у
differen	itial equation is:	
(3)	$\frac{H-h}{}=e^{-t/T_o}$	

	ΓΛ
where:	$T_o = $ basic time lag
When (2) is substituted into (1), the
solution	to the resulting ordinary
	tial equation is:
(3)	$\frac{H-h}{H-H_o}=e^{-t/T_o}$
where:	$H_0 = \text{hydraulic head at } t = 0$
	> 8, Hvorslev has evaluated
the shap	e factor, F. The resulting
express	ion for K is:
(4)	$K = \frac{r^2 \ln(L/R)}{2LT_a}$
	L = screen length
WIICIE.	R = radius of filter pack

	ļ		
RAW DATA			
L	Depth to		
Time (s)	Water (m)		
0	2.44		
15	2.29		
30	2.20		
60	2.14		
120	1.98		
240	1.66		
300	1.56		
360	1.54		
420	1.51		
480	1.495		
600	1.48		
*	*		
*	*		
*	*		
*	*		
*	* '		
*	*		
*	*		
*	*		
*	*		
*	*		
*	*		
*	*		
*	*		
*	*		
*	*		
*	*		
*	*		
*	*		
*	*		
*	*		
*	*		
*	*		
*	*		
l *	*		
*	*		
*	*		
*	*		
*	*		
*	*		
*	*		
*	*		
*	*		
*	*		
*	*		
*	*		

Basic Lag Time $(T_o) = 2.77$ minutes

Hydraulic Conductivity:

$$K = \frac{r^2 \ln \left(L / R \right)}{2LT_o}$$

K Results

2.30E-06 m/s 0.19859 m/day 72 m/yr 0.00023 cm/s

ANALYSIS OF PUMPING/ RECOVERY TEST DATA

1796 Courtwood Cr. 95% Ottawa, Ontario Canada K2C 2B5

Tel: (613) 224-5864

PROJECT	INFORMATION
Project Name:	
St. B	ernardin Sewage Works
Project Numbe	<u>r:</u>
	04-1120-708
Site Location:	
	St. Bernardin
Date of Test:	
	19-May-04

WELL INFORMATION		
Well ID:	03-4	
Static Depth to Water (m):	1.1	
Screen Length (m):	0.4	
Well Diameter (m):	0.0	
Filter Pack Diameter (m):	0.2	

Wen Di	ameter (m).	0.0
Filter P	ack Diameter (m):	0.2
A	NALYTICAL METH	OD
Method	l: Hvorslev (1951)	
Referen	ice: Freeze & Cherry,	1979
Calcula	tions:	
(1)	$q(t) = \pi r^2 \frac{dh}{dt} = FK(1)$	H-h)
where:	q = rate of inflow	
	r = casing radius	
	h = hydraulic head	
	t = time	
	F = shape factor	
Į	K = hydraulic conduc	tivity
1	H = static hydraulic h	ead
	•	
(2)	$T_o = \frac{\pi r^2}{FK}$	
where:	$T_o = basic time lag$	
When (2) is substituted into (1), the
solution	to the resulting ordina	ry
differen	itial equation is:	•
(3)	H-h $-t/T$	
1	$\frac{H-h}{H-H_o}=e^{-t/T_o}$	
where:	$H_0 = hydraulic head a$	t t = 0
For L/R	2 > 8, Hvorslev has eva	luated
the shap	pe factor, F. The result	ing
express	ion for K is:	•
(4)	$K = \frac{r^2 \ln(L/R)}{2LT_0}$	
١.	$2LT_o$ L = screen length	
where:	L = screen length	

R = radius of filter pack

	l
RAW	DATA
KAW	Depth to
Time (s)	Water (m)
0	2.00
30	1.90
60	1.86
120	1.79
180	1.715
240	1.67
300	1.625
480	1.42
600	1.25
720	1.20
900	1.175
1200	1.160
*	*
*	*
*	*
*	*
*	*
*	*
*	*
*	*
*	*
*	*
*	*
*	*
*	*
*	*
*	
*	*
*	*
*	*
*	*
*	*
*	*
*	*
*	*
*	*
*	*
*	*
*	*
*	*
*	*
*	*
*	*
*	*
*	*
*	*

	ANALYT	ICAL	RESUL	TS	
0.37	1				
(H-P)/(H-Ho)			\ \		
0.01	5 T _o	10 Tim	15 e (min)	20	25
Filter Pack	g Radius (Radius (Fallius (Fa	?) =		metres metres metres	

Basic Lag Time $(T_o) = 6.96$ minutes

Hydraulic Conductivity:

$$K = \frac{r^2 \ln(L/R)}{2LT_o}$$

K Results

1.10E-06 m/s 0.09478 m/day 35 m/yr 0.00011 cm/s

ANALYSIS OF PUMPING/ RECOVERY TEST DATA

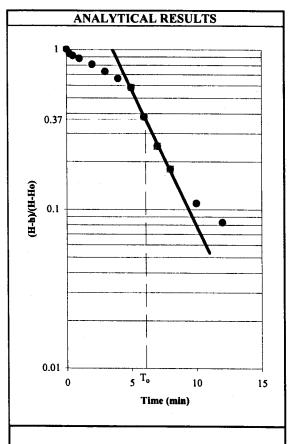
91%

1796 Courtwood Cr. Ottawa, Ontario Canada K2C 2B5 Tel: (613) 224-5864

Fx: (613) 224-9928

PROJECT INFORMATION		
Project Name:		
St. Be	ernardin Sewage Work	
Project Number	••	
	04-1120-708	
Site Location:		
	St. Bernardin	
Date of Test:		
	19-May-04	

WELL INFORMATION		
Well ID:	03-5	
Static Depth to Water (m):	1.0	
Screen Length (m):	0.4	
Well Diameter (m):	0.0	
Filter Pack Diameter (m):	0.2	


Well Di	ameter (m):	0.0
Filter P	ack Diameter (m):	0.2
A	NALYTICAL METH	OD
Method	l: Hvorslev (1951)	
Referen	ice: Freeze & Cherry,	1979
Calcula		
(1)	$q(t) = \pi r^2 \frac{dh}{dt} = FK(t)$	H-h)
where:	q = rate of inflow	
	r = casing radius	
	h = hydraulic head	
	t = time	
	F = shape factor	
	K = hydraulic conduct	tivity
	H = static hydraulic he	ead
(2)	$T_o = \frac{\pi r^2}{EK}$	
	1 IX	
where:	$T_o = basic time lag$	
	2) is substituted into (1)	
	to the resulting ordina	ry
	itial equation is:	
(3)	$\frac{H-h}{H-H_o}=e^{-t/T_o}$	
		_
where:	H _o = hydraulic head a	t t = 0
For L/R	l > 8, Hvorslev has eval	luated
L	pe factor, F. The resulti	
·		-

expression for K is:

(4) $K = \frac{r^2 \ln(L/R)}{2LT_o}$ where: L = screen length

R = radius of filter pack

**	n.m. 1
RAW	DATA Darah 40
Time (e)	Depth to
Time (s)	Water (m) 2.16
15	2.10
30	2.06
60	2.00
120	1.94
180	1.85
240	1.77
300	1.68
360	1.45
420	1.30
480	1.22
600	1.14
720	1.11
*	*
*	*
*	*
*	*
*	*
*	*
*	*
*	*
*	*
*	*
*	*
*	*
*	*
*	*
	*
*	*
*	*
*	*
*	*
*	*
*	*
*	*
*	*
*	*
*	*
*	*
*	*
*	*
*	*
*	*
*	*
*	*
*	*
*	*

Casing Radius (r) = 0.016 metres
Filter Pack Radius (R) = 0.100 metres
Screen Length (L) = 0.4 metres

Basic Lag Time $(T_0) = 6.11$ minutes

Hydraulic Conductivity:

$$K = \frac{r^2 \ln \left(L / R \right)}{2LT_o}$$

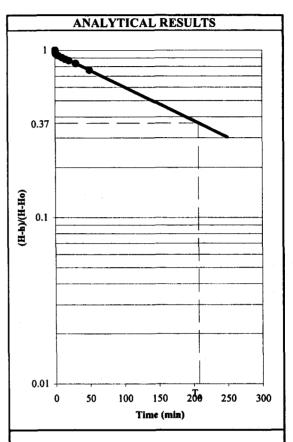
K Results

1.21E-06 m/s 0.10461 m/day 38.2 m/yr 0.00012 cm/s

ANALYSIS OF PUMPING/ RECOVERY TEST DATA

53% 1796 Courtwood Cr. Ottawa, Ontario Canada K2C 2B5

Tel: (613) 224-5864 Fx: (613) 224-9928


PROJECT INFORMATION		
Project Name:		
St. B	ernardin Sewage Work	
Project Number	<u>r:</u>	
	03-1120-717	
Site Location:		
1	St. Bernardin	
Date of Test:		
	19-May-04	

WELL INFORMATION			
Well ID:	03-6		
Static Depth to Water (m):	2.2		
Screen Length (m):	1.5		
Well Diameter (m):	0.0		
Filter Pack Diameter (m):	0.2		

Wen Di	ameter (m).	0.0
Filter P	ack Diameter (m):	0.2
A	NALYTICAL METH	OD
Method	: Hvorslev (1951)	
Referen	ce: Freeze & Cherry,	1979
Calcula	tions:	
(1)	$q(t) = \pi r^2 \frac{dh}{dt} = FK(H)$	<i>I−h</i>)
where:	q = rate of inflow	
1	r = casing radius	
	h = hydraulic head	
	t = time	
Į.	F = shape factor	
	K = hydraulic conduct	ivity
	H = static hydraulic he	ad
(2)	$T_o = \frac{\pi r^2}{FK}$ $T_o = \text{basic time lag}$	
wilere.	1 ₀ – basic time lag	
solution	2) is substituted into (1) to the resulting ordinaritial equation is:	
(3)		
(3)	$\frac{H-h}{H-H_o}=e^{-t/T_o}$	
where:	$H_0 = \text{hydraulic head at}$	t t = 0
For L/R	> 8, Hvorslev has eval	uated
	e factor, F. The resulti	ng
	ion for K is:	
(4)	$K = \frac{r^2 \ln(L/R)}{2LT_0}$	
where:	L = screen length	

R = radius of filter pack

DAW.	DATA
KAW	DATA Depth to
Time (s)	Water (m)
Time (s)	3.48
0 30	3.48 3.43
30 60	3.43 3.41
60 120	3.41 3.40
	3.40 3.39
180 300	3.39 3.38
300 600	3.38 3.35
900 900	3.35 3.32
900	
1200	3.30 3.255
1800	3.255 3.16
3000 *	3.16 *
*	*
*	*
*	*
*	*
	*
*	*
*	*
*	*
	*
*	*
*	*
*	*
*	
*	*
*	*
*	
*	*
*	*
*	*
*	*
*	*
*	
*	*
*	*
*	*
*	*
*	*
*	*
*	*
*	*
*	*
*	*
*	*
*	*
*	*

Casing Radius (r) = 0.016 metres
Filter Pack Radius (R) = 0.100 metres
Screen Length (L) = 1.5 metres

Basic Lag Time (T_o) = 207.34 minutes

Hydraulic Conductivity:

$$K = \frac{r^2 \ln \left(L/R\right)}{2LT_o}$$

K Results

1.86E-08 m/s 0.0016 m/day 1 m/yr 1.9E-06 cm/s

ANALYSIS OF PUMPING/ RECOVERY TEST DATA

PROJECT INFORMATION Project Name: St. Bernardin Sewage Works Project Number: 03-1120-717 Site Location: St. Bernardin Date of Test: 12-Sep-03

WELL INFORMATION			
Well ID:	03-2		
Static Depth to Water (m):	1.7		
Screen Length (m):	0.2		
Well Diameter (m):	0.0		
Filter Pack Diameter (m):	0.2		

ALYTICAL METHOD Hyorslev (1951) e: Freeze & Cherry, 1979 ons: $f(t) = \pi r^2 \frac{dh}{dt} = FK(H-h)$ $f(t) = rate of inflow$ $f(t) = casing radius$ $f(t) = hydraulic head$	
Hvorslev (1951) e: Freeze & Cherry, 1979 ons: $u(t) = \pi r^2 \frac{dh}{dt} = FK(H-h)$ $u(t) = rate of inflow = casing radius$	
e: Freeze & Cherry, 1979 ons: $a(t) = \pi r^2 \frac{dh}{dt} = FK(H-h)$ $a(t) = \text{rate of inflow}$ $= \text{casing radius}$	
ons: $p(t) = \pi r^2 \frac{dh}{dt} = FK(H-h)$ $p(t) = \pi r^2 \frac{dh}{dt} = FK(H-h)$ $p(t) = \pi r^2 \frac{dh}{dt} = FK(H-h)$ $p(t) = \pi r^2 \frac{dh}{dt} = FK(H-h)$	
$f(t) = \pi r^2 \frac{dh}{dt} = FK(H - h)$ $f(t) = \text{rate of inflow}$ $f(t) = \text{casing radius}$	
erate of inflow casing radius	
= casing radius	
-	
- hydraulia head	
i – nyuraune neau	
= time	
= shape factor	
ζ = hydraulic conductivity	
I = static hydraulic head	
$T_o = \frac{\pi r^2}{FK}$	
Γ_0 = basic time lag	
-	
-	
$\frac{II}{H} = e^{-I/I_o}$	
	F = shape factor K = hydraulic conductivity H = static hydraulic head $T_o = \frac{\pi r^2}{FK}$ Γ_o = basic time lag is substituted into (1), the to the resulting ordinary lal equation is: $\frac{H - h}{H - H_o} = e^{-t/T_o}$ H_o = hydraulic head at t = 0

R = radius of filter pack

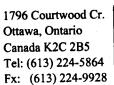
RAW	DATA
i	Depth to
Time (s)	Water (m)
0	2.15
10	2.147
20	2.145
30	2.14
40	2.138
50	2.137
60	2.136
70	2.136
80	2.135
90	2.135
100	2.134
110	2.133
120	2.133
140	2.132
160	2.132
180	2.13
210	2.124
240	2.122
270	2.122
300	2.12
360	2.118
1	2.12
420	
480	2.11
540	2.1
600	2.1
720	2.09
840	2.08
960	2.07
1080	2.06
1200	2.05
1500	2.03
1800	2.01
2100	1.99
2400	1.97
2700	1.95
3000	1.94
3300	1.92
3600	1.9
4200	1.86
4800	1.82
*	*
*	*
*	*
*	*
*	*
*	*
*	*

Golder Associates

1 😭	ANALYT	10.10	· · · · ·	10	
		.			
		- 1	*		
0.37					-
(H-H)/(H-H 0)					
)(4-H)					
					_
0.01	0 20	40	60	80 T _e	100
		Time	(min)		-i
	sing Radius				
	'ack Radius (reen Length (0.100 0.2	metres metres	
Basi	ic Lag Time (= (_o T	90.97	minutes	
	<u>Hydrau</u>	lic Con	ductivit	t <u>v:</u>	
	$K = \frac{1}{2}$	$\frac{r^2 \ln \left(1\right)}{2L}$	$\frac{L/R}{T_o}$		
	<u>K</u>]	Resul	<u>ts</u>		
		3E-08 0702	m/s m/day		
	3		m/gay m/yr cm/s		
		L-00	01125		

ANALYSIS OF PUMPING/ RECOVERY TEST DATA

PROJECT INFORMATION Project Name: St. Bernardin Sewage Works Project Number: 03-1120-717 Site Location: St. Bernardin Date of Test: 12-Sep-03


WELL INFORMATION	N
Well ID:	03-3
Static Depth to Water (m):	2.1
Screen Length (m):	0.2
Well Diameter (m):	0.0
Filter Pack Diameter (m):	0.2

Filter Pa	ack Diameter (m):	0.2
A	NALYTICAL METH	OD
Method	: Hvorslev (1951)	
Referen	ce: Freeze & Cherry,	1979
Calcula	tions:	
(1)	$q(t) = \pi r^2 \frac{dh}{dt} = FK(H)$	I-h)
where:	q = rate of inflow	
	r = casing radius	
İ	h = hydraulic head	
	t = time	
1	F = shape factor	
Ì	K = hydraulic conduct	ivity
1	H = static hydraulic he	ead
(2)	$T_o = \frac{\pi r^2}{FK}$	
where:	$T_o = $ basic time lag	
solution	2) is substituted into (1) to the resulting ordinal equation is:	
'	$\frac{H-h}{H-H_o}=e^{-t/T_o}$	
where:	H _o = hydraulic head a	t t = 0
	R > 8, Hvorslev has eva pe factor, F. The result	
	sion for K is:	-
(4)	$K = \frac{r^2 \ln(L/R)}{2LT_o}$	
lubara.	i - careen length	

where: L = screen length

R = radius of filter pack

RAW	DATA
	Depth to
Time (s)	Water (m)
0	2.605
10	2.581
20	2.569
30	2.56
40	2.55
50	2.542
60	2.534
70	2.518
80	2.508
90	2.501
100	2.496
110	2.49
120	2.476 2.466
140 160	2.447
180	2.447
210	2.422
240	2.405
270	2.389
300	2.373
360	2.348
420	2.336
480	2.308
540	2.291
600	2.279
720	2.252
840	2.232
960	2.216
1080	2.188
1200	2.182
1500	2.169
1800	2.16
*	*
*	*
*	*
*	*
*	
	*
.	•
! .	*
:	*
1 :	*
]	*
*	*
*	*
	*

	1				
	0.37				
(H-h)/(H-Ho)	0.1		7		
(H-h				•	
	0.01	T _{° 10}	20	30	4

Casing Radius (r) =	0.016	metres
Filter Pack Radius (R) =	0.100	metres
Screen Length (L) =	0.2	metres

Basic Lag Time $(T_0) = 8.15$ minutes

Hydraulic Conductivity:

$$K = \frac{r^2 \ln \left(L / R \right)}{2LT_o}$$

K Results

9.07E-07 m/s 7.84E-02 m/day 29 m/yr 9.1E-05 cm/s

ANALYSIS OF PUMPING/ RECOVERY TEST DATA

PROJECT	INFORMATION
Project Name:	
St. Be	ernardin Sewage Works
Project Number	<u>r:</u>
	03-1120-717
Site Location:	
	St. Bernardin
Date of Test:	
	11-Nov-03

WELL INFORMATION	N
Well ID:	03-1
Static Depth to Water (m):	1.2
Screen Length (m):	0.6
Well Diameter (m):	0.0
Filter Pack Diameter (m):	0.2

A	NALYTICAL METHOD	
Method	l: Hvorslev (1951)	
Referen	ice: Freeze & Cherry, 1979	
Calcula		
(1)	$q(t) = \pi r^2 \frac{dh}{dt} = FK(H - h)$	
where:	q = rate of inflow	
	r = casing radius	
	h = hydraulic head	
	t = time	
	F = shape factor	
	K = hydraulic conductivity	
	H = static hydraulic head	
(2)	$T_o = \frac{\pi r^2}{FK}$	
where:	T _o = basic time lag	
solution	2) is substituted into (1), the to the resulting ordinary stial equation is:	
(3)	-	
ľ ´	$\frac{H-h}{H-H_o}=e^{-t/T_o}$	
where:	$H_0 = \text{hydraulic head at t} = 0$	
For L/R	2 > 8, Hvorslev has evaluated	
the shap	pe factor, F. The resulting	
express	ion for K is:	
(4)	$K = \frac{r^2 \ln(L/R)}{2LT_a}$	
where:	L = screen length	

R = radius of filter pack

		}
ĺ	RAW	DATA
İ		Depth to
	Time (s)	Water (m)
	0	1.82
	5	1.81
ĺ	10	1.8
i	15	1.795
	20	1.795
	25	1.7904
	30	1.785
	35	1.78
	40	1.78
	45	1.775
	50	1.77
	55	1.765
	60	1.76
	70	1.755
	80	1.75
	90	1.74
	100	1.73
	110	1.725
	120	1.72
	140	1.71
	160	1.695
	180	1.68
	210	1.67 1.65
	240 270	1.635
	300	1.62
	360	1.595
	420	1.565
	480	1.54
	540	1.52
	600	1.495
	900	1.405
	1200	1.29
	*	*
	*	*
		*
	*	*
	*	*
	*	*
	*	*
	*	*
	*	*
	*	*
	*	*
	*	*
	*	*
		*

1796 Courtwood Cr. Ottawa, Ontario Canada K2C 2B5 Tel: (613) 224-5864 Fx: (613) 224-9928

	1						·	
	ļ							
	. [4				
	0.37				-			
					\dashv	1		
					<u> </u>			
જ								
(H-h)/(H-Ho)	0.1						•	
I-h)/(0.1							
=					土			
					-			
	0.01	ļ			To			
	()	5	10 Ti	me (r		20	25
	Casi	ng Ra	adius	(r) =	0.	.016	metres	
Filt	er Pac	k Ra	dius (\mathbf{R}) =	0.	100	metres	
	Scree	n Lei	ngth (L) =	(0.6	metres	
1	Basic I	Lag T	'ime (T _o) =	1.	3.03	minute	es
		<u>H</u> y	drau	lie Co	ndu	ctivi	ty:	
		k	< = '	r² ln	(L /	R)		
		А		2.	LT_o			
			K I	Resu	lts			
			22.					
			4.89	9E-07	m/s	:		
				9E-07 4224				
			0.04 15		m/g m/y	day yr		

ANALYSIS OF PUMPING/ RECOVERY TEST DATA

PROJECT	INFORMATION
Project Name:	
St. Be	ernardin Sewage Works
Project Number	<u>:</u>
	03-1120-717
Site Location:	
	St. Bernardin
Date of Test:	
	11-Nov-03

WELL INFORMATION			
Well ID:	03-3		
Static Depth to Water (m):	1.5		
Screen Length (m):	0.6		
Well Diameter (m):	0.0		
Filter Pack Diameter (m):	0.2		

I meer I	ick Diameter (m).
Al	NALYTICAL METHOD
Method	: Hvorslev (1951)
Referen	ce: Freeze & Cherry, 1979
Calcula	
(1)	$q(t) = \pi r^2 \frac{dh}{dt} = FK(H-h)$
where:	q = rate of inflow
	r = casing radius
	h = hydraulic head
	t = time
1	F = shape factor
1	K = hydraulic conductivity
1	H = static hydraulic head
(2)	$T_o = \frac{\pi r^2}{FK}$
where:	$T_o = basic time lag$
solution	2) is substituted into (1), the a to the resulting ordinary atial equation is:
(3)	•
	$\frac{H-h}{H-H_o}=e^{-t/T_o}$
where:	$H_0 = \text{hydraulic head at } t = 0$
For L/F	R > 8, Hvorslev has evaluated
the sha	pe factor, F. The resulting
express	sion for K is:
(4)	$K = \frac{r^2 \ln(L/R)}{2LT_a}$
where:	L = screen length

R = radius of filter pack

	1
RAW	DATA
	Depth to
Րime (s)	Water (m)
0	2.4
5	2.39
10	2.38
15	2.36
20	2.34
25	2.33
30	2.32
35	2.31
40	2.3
45	2.29
50	2.28
55	2.65
70	2.225
80	2.2
90	2.175
100	2.13
110	2.11
120	2.09
140	2.05
160	2.01
180	1.95 1.85
210	1.83
240	1.695
270 300	1.67
330	1.65
360	1.63
390	1.62
420	1.61
450	1.6
480	1.6
*	*
*	*
*	*
*	*
*	*
*	*
*	*
*	*
*	*
* *	*
*	*
*	*
*	*
*	*
*	*
*	*

1796 Courtwood Cr. Ottawa, Ontario Canada K2C 2B5 Tel: (613) 224-5864 Fx: (613) 224-9928

	1	ANA	LYT	ICALI	RESULT	S	
(H-h)/(H-Ho)	0.37				<u> </u>	\	
	0.01	0	2	T _{o 4}	6 : (min)	8	10

Casing Radius (r) = 0.016 metres
Filter Pack Radius (R) = 0.100 metres
Screen Length (L) = 0.6 metres

Basic Lag Time $(T_o) = 3.62$ minutes

Hydraulic Conductivity:

$$K = \frac{r^2 \ln \left(L / R \right)}{2LT_o}$$

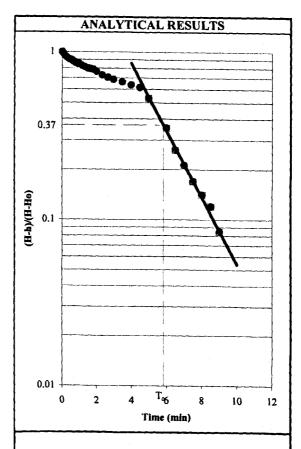
K Results

1.76E-06 m/s 0.15208 m/day 56 m/yr 0.00018 cm/s

ANALYSIS OF PUMPING/ RECOVERY TEST DATA

PROJECT INFORMATION		
Project Name:		
St. B	ernardin Sewage Works	
Project Number	<u>r:</u>	
	03-1120-717	
Site Location:		
	St. Bernardin	
Date of Test:		
	11-Nov-03	

WELL INFORMATION			
Well ID:	03-4		
Static Depth to Water (m):	1.2		
Screen Length (m):	0.4		
Well Diameter (m):	0.0		
Filter Pack Diameter (m):	0.2		


A	NALYTICAL METHOD
Method	l: Hvorslev (1951)
Referen	ice: Freeze & Cherry, 1979
Calcula	tions:
(1)	$q(t) = \pi r^2 \frac{dh}{dt} = FK(H-h)$
where:	q = rate of inflow
1	r = casing radius
1	h = hydraulic head
1	t = time
ļ	F = shape factor
	K = hydraulic conductivity
	H = static hydraulic head
(2)	$T_o = \frac{\pi r^2}{FK}$
	$T_o = $ basic time lag
When (2	2) is substituted into (1), the
solution	to the resulting ordinary
differen	tial equation is:
(3)	$\frac{H-h}{H-H_o}=e^{-t/T_o}$
where:	$H_0 = \text{hydraulic head at } t = 0$
	> 8, Hvorslev has evaluated
	e factor, F. The resulting
expressi	ion for K is:
(4)	$K = \frac{r^2 \ln(L/R)}{2LT}$
where:	L = screen length

R = radius of filter pack

RAW	DATA
	Depth to
Time (s)	Water (m)
0	1.9
5	1.88
10	1.86
15	1.85
20	1.84
25	1.83
30	1.825
35	1.82
40	1.81
45	1.8
50	1.8
55	1.79
60	1.79
70	1.775
80	1.765
90	1.755
100	1.75
110	1.745
120	1.73
140	1.705
160	1.69
180	1.675
210	1.66
240	1.64
270	1.625
300	1.565
360	1.44
390	1.375
420	1.34
450	1.31
480	1.29
510	1.275
540 *	1.25
*	*
*	*
*	*
*	•
*	*
*	*
. *	*
*	*
*	*
*	*
*	*
*	*
*	*
	Ŧ

1796 Courtwood Cr. Ottawa, Ontario Canada K2C 2B5 Tel: (613) 224-5864 Fx: (613) 224-9928

Casing Radius (r) = 0.016 metres
Filter Pack Radius (R) = 0.100 metres
Screen Length (L) = 0.35 metres

Basic Lag Time $(T_o) = 5.83$ minutes

Hydraulic Conductivity:

$$K = \frac{r^2 \ln \left(L / R \right)}{2LT_o}$$

K Results

1.31E-06 m/s 0.11321 m/day 41 m/yr 0.00013 cm/s

ANALYSIS OF PUMPING/ RECOVERY TEST DATA

PROJECT	INFORMATION
Project Name:	
St. Be	ernardin Sewage Works
Project Number	<u>r:</u>
	03-1120-717
Site Location:	
	St. Bernardin
Date of Test:	
	11-Nov-03

WELL INFORMATION			
Well ID:	03-6		
Static Depth to Water (m):	2.1		
Screen Length (m):	1.5		
Well Diameter (m):	0.0		
Filter Pack Diameter (m):	0.2		

Al	NALYTICAL METHOD
	: Hvorslev (1951)
1	ce: Freeze & Cherry, 1979
Calculat	tions:
(1)	$q(t) = \pi r^2 \frac{dh}{dt} = FK(H - h)$
where:	q = rate of inflow
ł	r = casing radius
1	h = hydraulic head
ţ	t = time
1	F = shape factor
	K = hydraulic conductivity
1	H = static hydraulic head
(2)	$T_o = \frac{\pi r^2}{FK}$
where:	T_0 = basic time lag
When (2) is substituted into (1), the
solution	to the resulting ordinary
differen	tial equation is:
(3)	$\frac{H-h}{H-H_o}=e^{-i/T_o}$
where:	$H_0 = \text{hydraulic head at } t = 0$
	2 > 8, Hvorslev has evaluated
	pe factor, F. The resulting
1 -	ion for K is:
(4)	$K = \frac{r^2 \ln(L/R)}{2LT_0}$
where:	L = screen length
	R = radius of filter pack

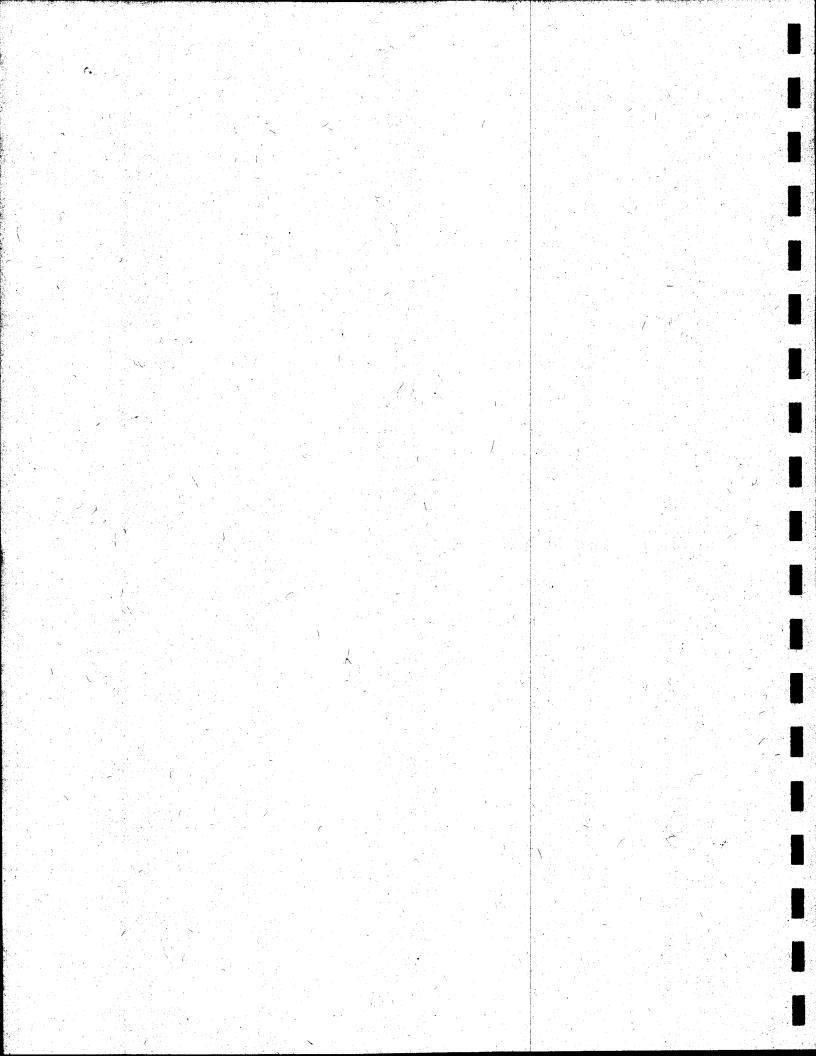
	DATA
KAW	DATA
D (.)	Depth to
rime (s)	Water (m)
0	3.32
5	3.32
10	3.3305
15	3.295
20	3.3305
25	3.3
35	3.295
45	3.29
50	3.285
45	3.29
50	3.285
60	3.285
70	3.28
80	3.27
90	3.27
100	3.26
110	3.26
120	3.26
140	3.255
160	3.245
180	3.245
210	3.235
240	3.23
270	3.225
300	3.22
360	3.2
420	3.19
480	3.18
540	3.17
600	3.17
900	3.15
1200	3.13
1800	3.1
3600	3
7200	2.87
*	*
*	*
	*
*	*
	*
	*
<u>.</u>	*
-	*
	*
	*
	*
	*
_	

1796 Courtwood Cr.
Ottawa, Ontario
Canada K2C 2B5
Tel: (613) 224-5864
Fx: (613) 224-9928

	ANALYT	CAL RES	ULTS		
1					
0.37					
(H-H)/(H-Ho)				200 Maria (1900 Ma	
1 -н)					
				And the second s	
0.01	0 50 1	00 150 Time (mi		230	300

Casing Radius (r) = 0.016 metres
Filter Pack Radius (R) = 0.100 metres
Screen Length (L) = 1.5 metres

Basic Lag Time $(T_o) = 256.34$ minutes


Hydraulic Conductivity:

$$K = \frac{r^2 \ln \left(L / R \right)}{2LT_o}$$

K Results

1.50E-08 m/s 1.30E-03 m/day 0.5 m/yr 1.5E-06 cm/s

APPENDIX E GROUNDWATER CHEMICAL ANALYSES DATA

ST. BERNARDIN - REPORT OF MONITORING RESULTS

Project: 031120717

Sample Source: BH03-1						Sheet: 1
Date Sampled:		12-Sep-2003	27-Oct-2003	27-Oct-2003(2)	19-May-2004	21-Oct-2004
Parameter	ODWQS					
1 Comment Ammonia (as N) Chloride Conductivity (uS/cm) Dissolved Oxygen DOC Nitrate (as N) Nitrite (as N) pH (pH units) Phosphorus (total) Sodium	250 5 10 1 6.5-8.5 200	dry	0.05 1390.0 4300 20.2 0.10 <0.10 6.1 4.850 874.0	0.34 1400.0 18.1 <0.10 <0.10 4.330 861.0	0.03 1330.0 4600 4.0 15.3 0.80 <1.00 6.8 5.460 767.0	0.05 1350.0 4900 6.6 34.7 0.40 <2.00 6.8 8.360 850.0
Temperature (C)	15		10.3	001.0	10.0	850.0 10.3

Golder Associates

ST. BERNARDIN - REPORT OF MONITORING RESULTS

Project: 031120717

Sample Source: BH03-2

Sheet: 1

Date Sampled:		12-Sep-2003	27-Oct-2003	19-May-2004	21-Oct-2004
Parameter	odwqs				
Ammonia (as N)		<0.02	0.03	0.09	0.68
Chloride	250	1370.0	1060.0	1130.0	1130.0
Conductivity (uS/cm)		>1990	4000	4040	4500
Dissolved Oxygen		6.8		5.4	5.6
DOC	5	31.5	32.2	104.3	54.2
Nitrate (as N)	10	4.17	5.95	1.20	12.70
Nitrite (as N)	1	<0.10	<0.10	<1.00	<2.00
pH (pH units)	6.5-8.5	7.1	6.5	7.1	7.1
Phosphorus (total)	3.5 4.0	1.010	4.130	3.660	2.300
Sodium	200	1140.0	955.0	886.0	872.0
Temperature (C)	15	18.7	9.7	10.5	9.8

ST. BERNARDIN - REPORT OF MONITORING RESULTS

Project: 031120717

Sample Source: BH03-3						Sheet: 1
Date Sampled:		12-Sep-2003	12-Sep-2003(2)	27-Oct-2003	19-May-2004	21-Oct-2004
Parameter	ODWQS					
Ammonia (as N) Chloride Conductivity (uS/cm) Dissolved Oxygen	250	0.04 1450.0 >1990 4.6	0.03 1510.0	<0.02 1710.0 >5000	<0.03 1190.0 4430 3.8	<0.03 1360.0 >5000 4.6
DOC Nitrate (as N) Nitrite (as N) pH (pH units) Phosphorus (total) Sodium Temperature (C)	5 10 1 6.5-8.5 200 15	19.9 2.24 <0.10 7.1 1.960 1130.0 16.4	17.9 2.72 <0.10 2.780 1410.0	12.7 16.80 <0.10 6.4 1.960 1310.0 10.2	16.0 1.20 <1.00 7.2 1.410 937.0 7.5	21.5 16.40 <2.00 7.3 2.050 960.0 9.4

ST. BERNARDIN - REPORT OF MONITORING RESULTS

Project: 031120717

Sample Source: BH03-3

Sheet: 2

_	_	
Data	Sampled:	
Date	Sambled.	

21-Oct-2004(2)

Parameter	ODWQS	
Ammonia (as N)		<0.03
Chloride	250	1450.0
Conductivity (uS/cm) Dissolved Oxygen		5.3
DOC	5	20.2
Nitrate (as N)	10	16.70
Nitrite (as N)	1	<2.00
pH (pH units)	6.5-8.5	
Phosphorus (total)		
Sodium	200	981.0
Temperature (C)	15	

ST. BERNARDIN - REPORT OF MONITORING RESULTS

Project: 031120717

Sample Source: BH03-4						Sheet: 1
Date Sampled:		12-Sep-2003	27-Oct-2003	19-May-2004	19-May-2004(2) 21-Oct-2004
Parameter	ODWQS					
1 Comment Ammonia (as N) Chloride Conductivity (uS/cm) Dissolved Oxygen DOC Nitrate (as N) Nitrite (as N) pH (pH units) Phosphorus (total) Sodium Temperature (C)	250 5 10 1 6.5-8.5 200 15	dry	0.18 894.0 2500 10.5 0.33 <0.10 6.3 3.760 308.0 10.1	<0.03 977.0 3350 6.5 8.2 1.10 <1.00 7.1 2.790 293.0 9.5	<0.03 956.0 8.5 1.00 <1.00 2.470 290.0	<0.03 1080.0 3800 6.0 11.8 0.80 <2.00 6.9 4.050 360.0 9.8

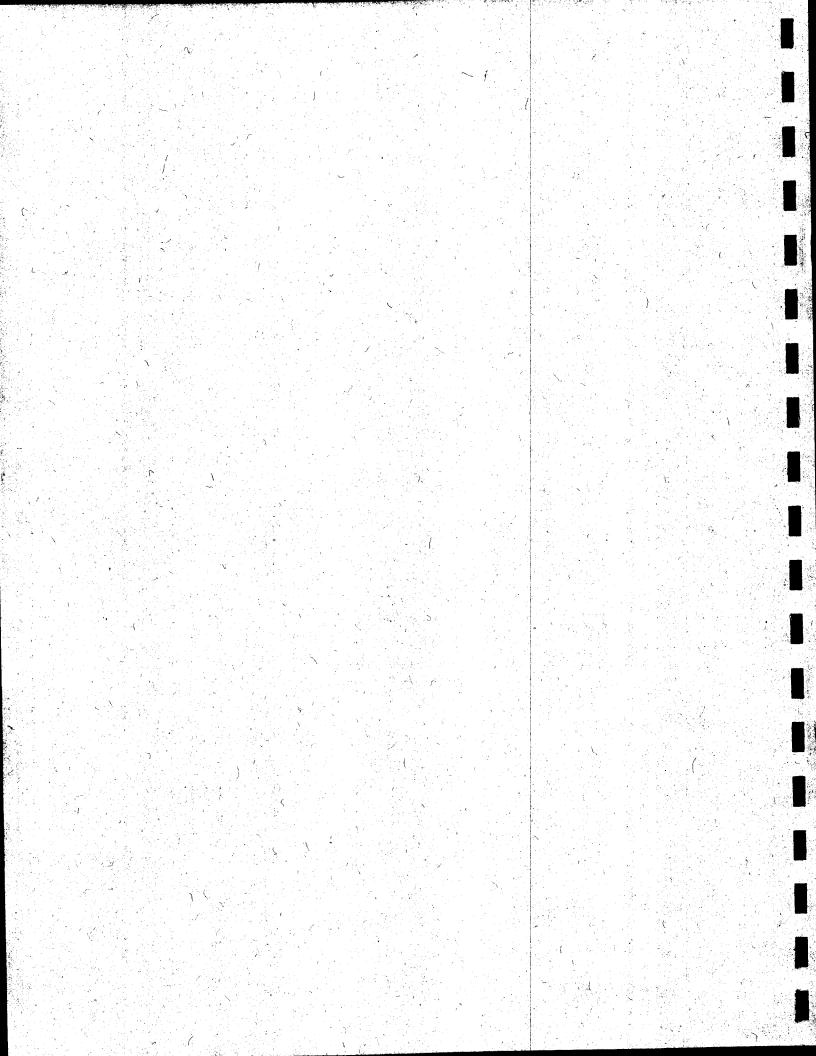
All values reported in mg/L unless otherwise noted.

ST. BERNARDIN - REPORT OF MONITORING RESULTS

Project: 031120717

Sample Source: BH03-5						She
Date Sampled:		12-Sep-2003	27-Oct-2003	19-May-2004	21-Oct-2004	
Parameter	ODWQS					_
1 Comment Ammonia (as N) Chloride Conductivity (uS/cm) Dissolved Oxygen DOC Nitrate (as N) Nitrite (as N) pH (pH units) Phosphorus (total) Sodium Temperature (C)	250 5 10 1 6.5-8.5 200 15	dry	0.06 916.0 3200 1.6 0.29 <0.10 6.5 5.440 387.0 10.0	<0.03 826.0 3230 4.4 3.5 0.40 <1.00 7.1 2.610 321.0 7.0	<0.03 906.0 3700 8.4 5.4 <0.20 <2.00 7.3 3.620 387.0 10.5	

ST. BERNARDIN - REPORT OF MONITORING RESULTS


Project: 031120717

Sample Source: BH03-6						Sheet: 1
Date Sampled:		12-Sep-2003	27-Oct-2003	19-May-2004	21-Oct-2004	
Parameter	ODWQS			· 		
1 Comment Ammonia (as N) Chloride Conductivity (uS/cm) Dissolved Oxygen DOC Nitrate (as N) Nitrite (as N) pH (pH units) Phosphorus (total) Sodium Temperature (C)	250 5 10 1 6.5-8.5 200 15	dry	dry	<0.03 2.0 220 7.4 16.7 <0.20 <0.20 7.2 1.880 12.6 8.0	<0.03 2.9 310 10.6 21.2 <0.20 <0.20 7.8 1.770 11.7 8.6	

All values reported in mg/L unless otherwise noted.

APPENDIX F

REPORT OF ANALYSES SHEETS
PSC ANALYTICAL SERVICES

GOLDER ASSOCIATES LTD. 1796 Courtwood Crescent Ottawa, ON K2C 2B5

Job: 2461117

Attn: Carolyn Van Delste/Caitlin Martin PO #:

Project: 04-1120-708 T-5000

8-Nov-2004

Page: Copy: 1 of 2

Final

Status:

Received: 23-Oct-2004

Ground Water Samples

Sample Id	Cl- SM 4110B mg/L	NO2-N SM 4110B mg/L	NO3-N SM 4110B mg/L	NH3-N SM 4500H mg/L	Total P SM 4500-P F mg/L	DOC SM 5310C mg/L	DO SM 4500G mg/L	Na ICAP mg/L
MW03-1	1350.	<2.0	0.4	0.05	8.36	34.7	4.6	850.
MW03-2	1130.	<2.0	12.7	0.68	2.30	54.2	6.2	872.
MW03-3	1360.	<2.0	16.4	<0.03	2.05	21.5	7.0	960.
MW03-4	1080.	<2.0	0.8	<0.03	4.05	11.8	5.9	360.
MW03-5	906.	<2.0	<0.2	<0.03	3.62	5.4	6.3	387.
MW03-6	2.9	<0.2	<0.2	<0.03	1.77	21.2	8.5	11.7
MW03-8	1450.	<2.0	16.7	<0.03	2.11	20.2	5.3	981.
Blank	<0.5	< 0.2	<0.2	<0.03	<0.002	<0.2		<0.1
QC Standard (found)	25.4	1.0	1.0	1.52	0.143	9.8		49.7
QC Standard (expected)	25.0	1.0	1.0	1.50	0.140	10		50.0
Repeat MW03-1	1380.	<2.0	0.3	0.05	8.52	34.6		850.

8-Nov-2004

GOLDER ASSOCIATES LTD. 1796 Courtwood Crescent Ottawa, ON K2C 2B5

Page:

Copy: 1 of 2

Attn: Carolyn Van Delste/Caitlin Martin

Received: 23-Oct-2004 09:45

Project: 04-1120-708 T-5000

PO #:

Job: 2461117

Status:

Final

All work recorded herein has been done in accordance with normal professional standards using accepted testing methodologies and QA/QC procedures. PSC Analytical is limited in liability to the actual cost of the pertinent analyses done unless otherwise agreed upon by contractual arrangement. Your samples will be retained by PSC Analytical for a period of 30 days following reporting or as per specific contractual arrangements.

Job approved by:

Signed:

NA Dancziger

Project Manager

GOLDER ASSOCIATES LTD. 1796 Courtwood Crescent Ottawa, ON K2C 2B5

Attn: Carolyn VanDelst

Project: 04-1120-708

Job: 2454545

Received: 21-May-2004 09:30

PO #: 04-1120-708

8-Jun-2004

Page: 1 of 2 Copy:

Final Status:

Water Samples

Sample Id	Cl- SM 4110B mg/L	NO2-N SM 4110B mg/L	NO3-N SM 4110B mg/L	DOC SM 5310C mg/L	NH3-N SM 4500H mg/L	Total P SM 4500-P F mg/L	Na ICAP mg/L
S-1	1330.	<1.0	0.8	15.3	0.03	5.46	767.
S-2	1130.	<1.0	1.2	104.3	0.09	3.66	886.
S-3	1190.	<1.0	1.2	16	<0.03	1.41	937.
S-4	977.	<1.0	1.1	8.2	<0.03	2.79	293.
S-5	826.	<1.0	0.4	3.5	<0.03	2.61	321.
S-6	2.0	<0.2	<0.2	16.7	<0.03	1.88	12.6
S-7	956.	<1.0	1.0	8.5	<0.03	2.47	290.
Blank	<0.5	<0.2	<0.2	<0.2	<0.03	<0.002	<0.1
QC Standard (found)	2.0	1.0	1.0	9.9	1.52	0.133	48.3
QC Standard (expected)	2.0	1.0	1.0	10	1.50	0.144	50.0
Repeat S-1	1330.	<1.0	0.9	16.3	0.03	5.29	754.

8-Jun-2004

GOLDER ASSOCIATES LTD. 1796 Courtwood Crescent Ottawa, ON K2C 2B5

Page:

2

Copy: 1 of 2

Attn: Carolyn VanDelst Project: 04-1120-708

Received: 21-May-2004 09:30

PO #: 04-1120-708

Job: 2454545

Status: Final

IC Analysis of Water: Some samples for NO2-N were analyzed at an extra dilution due to matrix interference. EQLs were adjusted accordingly.

All work recorded herein has been done in accordance with normal professional standards using accepted testing methodologies and QA/QC procedures. Philip Analytical is limited in liability to the actual cost of the pertinent analyses done unless otherwise agreed upon by contractual arrangement. Your samples will be retained by PASC for a period of 30 days following reporting or as per specific contractual arrangements.

Job approved by:

Signed:

Malgorzata Dancziger

Project Manager